About Us


Page 112

Fruits and Vegetables Help Reduce Ischemic Heart Disease Risk

Posted: January 28, 2011 at 6:13 pm

A new study discovered that regular consumption of fruits and vegetables greatly helps in reducing the risk of Ischemic Heart Disease.

Nowadays, more and more people are suffering from coronary artery diseases, also medically known as Ischemic Heart Disease (IHD). Ischemia happens when blood is restricted from entering a specific area, which causes the structures in that area to necrose, or to die, since blood carries with it life-giving oxygen and other essential nutrients. In the case of ischemic heart disease, blood supply is restricted from entering the heart.  Because of this, problems start to arise.

The development of Ischemic Heart Disease is dependent on the health of the blood vessels.  Arteries, for example, are the main sites for fatty plaque build-up.  When a person’s bad cholesterol level is too high, this would result to the accumulation of fatty deposits in the linings and the walls of the arteries.  Over time, this build-up will impede blood supply which will result to ischemia.  This is the main reason why health professionals have always emphasized the need to consume a healthy diet. Other risk factors for the development of IHD includes a family history of the said disease; when there is too much fat content in your daily diet; smoking; hypertension, and even the occurrence of a previous stroke or heart attack.

In the United States today, heart disease is the primary cause of death amongst the entire population. The primary cause of this ailment remains unknown but the number of risk factors is considerably high. It has been clear lately that the treatment of abnormalities of the body’s lipids can delay the progress of a possible atherosclerosis.

There are particular tests that can be done to know how much your ischemic heart disease has grown. Several diagnostic tests include electrocardiogram, echocardiogram, blood studies, x-rays, coronary angiogram and many more.

Eat More Fruits and Veggies

A recent study done in Europe investigated the relationship between the disease and diet and found out that those who get to eat a larger amount of vegetables and fruits seem to have a lower risk of suffering from ischemic heart disease. The said study was published online last January 19 at the European Heart Journal.

Their data showed that those who take in at least eight servings of vegetables and fruits everyday had about 22% lower risk of dying from Ischemic Heart Disease or IHD compared to those who eat less, or just about three servings a day. The lead author of the study, Dr. Francesca Crowe, stated that their research included more than 300,000 people from 8 different countries all around Europe.

According to Dr. Crowe, the bottom line of their analysis only says that if people would consume greater amounts of vegetables and fruits, then this would lead to a reduction in the number of IHD cases. However, she emphasizes that it is still important for individuals to live a healthy lifestyle by exercising and avoiding unhealthy habits such as smoking, substance abuse and drinking to the point of intoxication.

Natural Ways to Prevent Ischemic Heart Disease

Ischemic heart disease is considered to be a silent killer.  Sometimes, you go through life not knowing anything and when it hits you, it takes you aback. It is important, therefore, that you take note of these general measures that can help you prevent them from happening. The following are some of the most important ways that you can fight IHD, or any form of disease for that matter:

  • Get Some Regular Exercise. Exercise can help a lot in improving your blood flow and even reduce the occurrence of abnormal heart rates. This can include simple changes in your routine like probably taking the stairs instead of getting on the elevator, or walking the four blocks to your favorite library instead of taking the cab. But of course, it is much better if you can commit to doing regular exercise that you would already consider as a habit like probably walking or jogging a few minutes every other day.
  • Maintain A Healthy Diet. It is really very crucial that you watch what you eat when you are trying to monitor your cholesterol levels. You must be able to reduce it to a certain amount that would reach normalcy. Eat foods that are low in cholesterol and fats. It is also very important that you remember staying away from fats that are saturated. Your diet must include a lot of fruits and vegetables so that maintaining your ideal body weight would be less of a hassle.
  • Live a Healthy Lifestyle. As much as possible, try to avoid smoking and avoid, or limit, your alcohol intake. It is very essential for you to always get to monitor your blood pressure and always keep things in control. Try to be happy all the time so that you will not be prone to heart attacks due to too much stress. If you are currently overweight, then it is about time to start thinking about lowering your total weight and bringing it back to normal.
  • Talk to your Doctor. If you are overly worried with your heart’s condition, especially when you realize that you are not growing any younger, then you must not put off having regular check-ups with your doctor. It would not hurt that much if you would take the time to see him on a regular basis. These visits could include some tests or examinations that would try to figure out any possible threats to your heart and the rest of your body. Early diagnosis and treatment of Ischemic Heart Disease can definitely lead to total recovery. Through the years, lots of research has been done to promote and encourage fast and effective treatments for this ailment. It is very essential that you maintain a healthy lifestyle especially when it comes to making certain important changes in your diet and level of activity.

Remember this: a failure of the heart to function will lead to the loss of function of the other organs as well.  A deteriorating heart will cause a cascade of events which can sometimes prove to be fatal.  So if you love the people around you, do them a favor by loving your heart first – and then all else will follow.


Discuss this post in Frank Mangano’s forum!

Mindfulness Meditation and How it Helps Improve Brain Health

Posted: at 6:13 pm

A study showed that mindfulness meditation training in no less than 8 weeks can improve a person's brain structure.

An Introduction to Mindfulness Meditation

In Buddhist tradition, mindfulness meditation has the aims of realizing the true nature of reality by focusing on a single object. The object of concentration can be any physical object, an imaginary picture or, more commonly, the person’s breathing. The primary objective of mindfulness meditation is to keep the mind consistently focused on the same object for the entire period.

There are different organizations that promote mindfulness meditation as a regular habit to maintain and improve brain health. It is a practice that does not require any expensive equipment to perform. All you need to have is a quiet and well ventilated place, and a basic knowledge of how mindfulness meditation works. The goal is to focus your mind on the realities of the ‘now’ and be mindful of your actions and thoughts at the present time. Different studies show that mindfulness meditation can improve a person’s mood, boost the immune system and alleviate stress.

The first step is to find a comfortable and quiet place where you can sit for an extended period of time. You can choose to sit on the most comfortable chair you have at home and keep your back, neck and head straight at all times. Leave all thoughts of the past behind you and try to stay focused in the present. Notice your breathing and feel the sensation of the air flowing in and out of your body. Try to observe how each breath is different from the previous and keep doing this until it becomes instantaneous and effortless.

You will begin to think about other things like your worries, fears, anxiety and other thoughts of the past. Try not to ignore them, instead make an effort to acknowledge them lightly. Try to remain calm and re-direct your attention and focus back on your breathing. Being pulled away from your focal point will always happen at first. But as you practice, you will soon begin to have more control over your mind and you’ll get pulled out less frequently each time.

Mindfulness Meditation to Improve Brain Health

A team of researchers from the Massachusetts General Hospital found that mindfulness meditation can improve a person’s brain structure in just 8 weeks of continuous practice. The researchers gathered a group of study participants who participated in an 8-week mindfulness meditation program and measured their brain regions associated with stress, empathy, sense of self and memory. The study was the first to investigate the effects of meditation on the gray matter of the brain.

Lead researcher Sarah Lazar from the MGH Psychiatric Neuroimaging Research program said that mindfulness meditation does not only give practitioners a sense of physical relaxation and peacefulness but they had also reported physical and cognitive improvements as long-term benefits. She added that their study shows that the claimed benefits may be due to the resulting physiological changes of mindfulness meditation. The study gives evidence that the practice does not only give practitioners a feeling of temporary peacefulness but that it benefits them by creating positive changes in the brain.

The previous studies conducted by Lazar’s team already showed structural differences between people who practice mindfulness meditation from those who have no history of practicing meditation. They had observed an improvement in the cerebral cortex and in areas linked to emotional and attention integration. But the previous studies lacked the evidence to show that the differences were produced by the practice of mindfulness meditation.

In their most recent study, the researchers took magnetic resonance (MR) images of the brain structure of 16 study participants before and after they were subjected to 8 weeks of mindfulness meditation; the program was created by the University of Massachusetts’ Center of Mindfulness. The study participants also received meditation guides in the form of audio recordings in addition to their weekly mindfulness meditation meetings that focused on nonjudgmental awareness of the state of mind, feelings and sensations. They were also asked to track the length of time that they practiced mindfulness meditation each day. In order to overcome the weakness of their previous study, the researchers used a control group and took MR images of their brain with the same time interval.

The study participants who participated in the mindfulness meditation program reported an average of 17 minutes of meditation in a day. Their responses to a mindfulness exam also showed improvements compared to their responses before participating in the program. The MR images also showed increased gray matter density in the hippocampus which is known to be important for memory and learning. Increase in density in areas linked to introspection, compassion and self-awareness were also observed. The control group did not experience any of these similar changes.

A neuroscientist from the University of Miami said that the results of the study put some light on the effects of mindfulness meditation to the brain. She added that the study showed that stress can be reduced for a short 8-week period of practicing mindfulness mediation and that it opens more opportunities to investigate better ways of effectively managing stress-related disorders.

Other Health Benefits of Mindfulness Meditation

Different studies have found that mindfulness mediation will not only give a feeling of peacefulness and relaxation but that it can also produce long-term effects to the person’s mental abilities. Mindfulness meditation can help people improve their intentional response to the present moment. This results to making better decisions and will allow them to respond more effectively to stress. In the past, mindfulness meditation lacked the scientific basis to prove its claimed benefits. But scientific studies are slowly producing evidences to show that mindfulness meditation can create positive changes in the brain

The various health benefits of mindfulness meditation include:

  • development of self-acceptance
  • better pain management for chronic health conditions
  • increased self-awareness
  • improved immune function
  • reduced blood pressure
  • more effective management of stress, anxiety, depression and other related symptoms.
  • For chronic illness, studies had found that mindfulness meditation can help patient better manage episodes of pain and prevent resulting emotional complications like stress and depression.


Discuss this post in Frank Mangano’s forum!

Eat Berries For Lower Blood Pressure

Posted: at 6:13 pm

A study revealed that anthocyanins found in berries can help lower blood pressure and thus, manage hypertension.

Hypertension is otherwise known as high blood pressure or tensing of the arteries due to high pressure build-up. These arteries enable the transportation of blood from the heart to all the major organs and tissues in our body.  There are multiple causes of hypertension, such as obesity, chronic renal failure, diabetes mellitus type 2, renal infarction and even pregnancy. The normal blood pressure is within the bounds of 120/80, blood pressure ranging to 139/89 is categorized as pre-hypertension, and blood pressure of 140/90 and above is placed on the high category.

Symptoms of hypertension includes chronic headaches that goes on for days, vertigo or dizziness, nausea, heart palpitations, double vision or blurry, drowsiness, general fatigue, shortness of breath, and buzzing in the ears commonly known as tinnitus.

Hypertension Management

A treatment for this specific ailment varies but the most efficient cure for hypertension is using a complex approach. It includes patient’s history, age, gravity of the condition, therapy schemes that will concentrate on the ailment’s precise cause. Hypertension curable and it all begins with prevention.  This consists of keeping a healthy weight and lifestyle by avoiding excessive intake of alcohol, smoking cessation, and eating a well-balanced diet and regular exercise. Long ago, hypertension can only be controlled through the use of medications – but not anymore.

More natural forms of treatments are currently being introduced in the market. A study indicates that anthocyanins, a type of flavonoid found in strawberries, blueberries, cherries, purple grapes as well as in vegetables such as purple cabbage and beets, is helpful in alleviating high blood pressure.  According to a research study done by scientists from the Harvard School of Public Health, Harvard Medical School and a UK based University of Anglia, multiple intake of anthocyanins reduces the dangers of hypertension by up to 12 percent. Hence, the most important advantage one can get from taking in foods that are rich in anthocyanin is the management of hypertension. Cardiovascular diseases (CVD) are a result of chronic hypertension, and it is known to causes half of Europe’s death, and at the same time tallying Europe’s economy expense around $202 billion per year.

Research Findings

For an average span of 14 years, Harvard’s Eric Rimm led the researchers in gathering data from various subjects, consisting of 133, 914 women, and 23,043 men. Flavonoids and other subcategories were analyzed using questionnaires regarding food frequencies and were distributed every 4 years. An accumulation of 5,629 and 29,018 documented cases of hypertension were tabulated in men and women, correspondingly.

When the figures were finally reported, the researchers discovered that the topmost average consumption that ranges from 16.2 to 12.0 milligrams daily was correlated to an 8 percent reduction to the dangers of hypertension. On the other hand, a 12 percent increase in lowering hypertension risk was tabulated among subjects with ages from 60 and above, as compared to the nethermost consumption of anthocyanins, ranging from 5.7 to 6.8.

While no other subcategories of flavonoids were related to high blood pressure, researchers however, observed that the compound apeginin was linked to a 5 percent decrease in risk. When the maximum and minimum levels of intakes were compared, researchers added that a 6 percent reduction in the dangers of hypertension was noted for subjects over the age of 60 that has the topmost average consumption of flavan-3-ol catechin.  Also an important finding was documented stating that the consumption of blueberries among people of the same age group lessened their risk of hypertension by up to 10 percent compared to those who did not consume any blueberries. Dr. Rimm and his colleagues wrote that the results reinforce the theory that antihypertensive biological activities may be applicable to the processes of vasodilation linked with a particular flavonoid physical attribute.

Key Elements

According to Dr. Rimm and his colleagues, there is an existence of vast flavonoid structural varieties, but the likelihood that it can lower the effects of blood pressure is inadequate with regards to its similar anatomical composites which include the catechol and 4’ hydroxy flavonoids.

In addition, the research findings implies that distinct categories of flavonoids are connected with lowering blood pressure especially anthocyanins.  The data is highly significant due to the fact that anthocyanins are commonly found in blueberries, strawberries, cranberries, fruits that are normally consumed and can be easily added to a person’s dietary needs. Researchers also added that blackcurrants, blood orange juice and blueberries have an additional 500 mg of anthocyanins.

The researchers added, that the fundamental biological process wherein flavonoids helps control blood pressure comprise the influence of flavonoids with regards to the vascular movement of blood, vascular reactivity, and the process of glucose uptake.

However, researchers from the American Journal of Clinical Nutrition states that the research needs additional thorough investigations, which will include intervention analysis to assess the ideal dosage of foods that are rich in anthocyanin that could prevent hypertension and reinforce the recommendation and remedy of hypertension.

Additional Information Regarding Flavonoids

Other than hypertension, anthocyanin, the flavonoid compound is also recognized by countless laboratory researches.

  • Based on findings, anthocyanin is also potent in preventing cancer by delaying the development of pre-malignant cells, hastening apoptosis, which effectively kills cancer cells in a faster rate.
  • It also helps in controlling inflammation by dampening allergic reactions.
  • It also cancels out enzymes that damage the connective tissue and its antioxidant properties blocks oxidants from destroying connective tissue.  Furthermore, it repairs proteins that were damaged in the blood vessel wall.
  • Anthocyanins, at the same time hinders abnormal protein production, a significant importance for diabetic patients, since profuse protein production may lead to retinopathy which takes place when the body tries to repair leaks from damage capillaries.
  • Lastly, anthocyanins may help prevent brain damage. Since the human brain is highly vulnerable to damage by peroxynitrite nitration of tyrosine excess in proteins and enzymes causing neurodegenerative ailments and possible brain trauma. The nitrates impede receptor sites, hence stopping neural growth and restorative processes.  Anthocyanins’ job is to aid the brain by protecting it against neurological diseases.


Discuss this post in Frank Mangano’s forum!

Prohibitin and Calorie Restriction

Posted: at 6:12 pm

More sophisticated studies of the biological changes produced - quite quickly - by calorie restriction continue to yield new information: "Caloric restriction (CR) is well known to expand lifespan in a variety of species and to retard many age-related diseases. The effects of relatively mild CR on the proteome profile in relation to lifespan have not yet been reported, despite the more extensive studies of the stricter CR conditions. Thus, the present study was conducted to elucidate the protein profiles in rat livers after mild CR for a relatively short time. Young growing rats were fed CR diets (10% and 30% CR) for 1 month. ... The most remarkable protein among the differentially expressed proteins was found to be prohibitin, the abundance of which was increased by 30% CR. Prohibitin is a ubiquitously expressed protein shown to suppress cell proliferation and to be related to longevity. The increase in prohibitin was observed both in 10% and 30% CR by Western blot analysis. Furthermore, induction of AMP-activated kinase (AMPK) protein, related to the actions of prohibitin in promoting longevity, was observed. The increased prohibitin level in response to subtle CR suggests that this increase may be one of the early events leading to the expansion of lifespan in response to CR."

Link: http://www.ncbi.nlm.nih.gov/pubmed/21256116

Nanoparticles Spur Wound Healing

Posted: at 6:12 pm

An example of one of the ways in which the natural process of healing can be adjusted, or rescued when it fails: "investigators have developed a novel system for delivery of growth factors to chronic wounds such as pressure sores and diabetic foot ulcers. ... the team [reports] fabricating nanospheres containing keratinocyte growth factor (KGF), a protein known to play an important role in wound healing, fused with elastin-like peptides. When suspended in a fibrin gel, these nanoparticles improved the healing of deep skin wounds in diabetic mice. ... It is quite amazing how just one dose of the fusion protein was enough to induce significant tissue regeneration in two weeks. Previous reports have suggested that KGF can help heal chronic wounds. But in most studies the growth factor was applied to the surface of the wound, limiting its availability to deeper tissues and requiring repeat applications to produce any clinical benefit. Using large quantities of growth factor would make this therapy extremely expensive. Our work circumvents these limitations by more efficiently delivering KFG throughout the wound to stimulate tissue regeneration. ... The authors describe developing a fusion protein from recombinant KGF and elastin-like-peptides, which are major constituents of skin and other connective tissues. Laboratory experiments showed that the fusion protein retained the wound-healing properties of both elastin and KGF and that it rapidly and efficiently self-assembled into nanoparticles in response to a simple increase in temperature. When applied to deep skin wounds in genetically diabetic mice, the nanoparticles accelerated healing by stimulating the formation of both surface epithelial tissue and thick fibrous connective tissue."

Link: http://www.eurekalert.org/pub_releases/2011-01/mgh-gna012611.php

NOVA on Longevity Science

Posted: at 6:12 pm

An edition of the PBS popular science series NOVA that aired today looks at a little of present day longevity science:

This provocative episode of NOVA scienceNOW examines whether we can slow down the aging process, looks at the latest on human hibernation, and checks in with bioengineers and a computer scientist inventing ways to keep us "going forever." Neil deGrasse Tyson also takes a lighthearted look at whether the tricks that have kept a 1966 Volvo running for 2.7 million miles can also help the human body go the extra mile.

You can watch it online, and one of the embedded section of the show is provided below. This isn't earthshaking stuff, and should all be familiar old news to readers here, but I'm all for seeing more high quality productions that aim to introduce the public to the fundamental ideas of applied aging and longevity research:

As was pointed out to me in a private email, there is a refreshing lack of negativity in the program - it's a generally positive outlook on the science that is presented. That may be a sign of progress.

Enhancing Memory With Insulin-Like Growth Factor

Posted: at 6:12 pm

From ScienceDaily: "A naturally occurring growth factor significantly boosted retention and prevented forgetting of a fear memory when injected into rats' memory circuitry during time-limited windows when memories become fragile and changeable. ... To our knowledge, this is the first demonstration of potent memory enhancement via a naturally occurring factor that readily passes through the blood-brain barrier - and thus may hold promise for treatment development ... The staying power of a memory depends on the synthesis of new proteins and structural changes in the connections between brain cells. These memory-strengthening changes occur within time-limited windows right after learning, when memories undergo consolidation, and also right after a memory is retrieved, a process called reconsolidation. Hints from other studies led the researchers to suspect that IGF-II plays a role in these processes within the brain's memory center, the hippocampus, where it is relatively highly concentrated. The little-known growth factor is part of the brain's machinery for tissue repair and regeneration; it is important during development and declines with age. ... learning boosted the expression of naturally occurring IGF-II in the hippocampus. So the researchers injected synthetic IGF-II directly into the hippocampus during windows of consolidation or reconsolidation, when memories are malleable. Remarkably, the rats' memory markedly improved - with the effects lasting at least a few weeks. An examination of the animals' brains revealed that IGF-II had strengthened the cellular connections and mechanisms underlying long-term memory - a process called long-term potentiation."


The 2nd Annual Young Cryonicists Gathering

Posted: at 6:12 pm

The cryonics community last year held an outreach event for younger members - a part of the necessary structure of cryonics as a process is a continuing community to maintain the preserved bodies and brains of those who preceded them. This year the event will be held in May: "This cryonics focus group seminar hosted by Bill Faloon and Carin Idun will be held on Thursday, May 19 and Friday, May 20, 2011, in Fort Lauderdale, Florida. Invitations were mailed to CI and Alcor members ages 13-29. The purpose of the young cryonicists' seminars is to develop a continuing social network of like-minded individuals who otherwise might not have the opportunity to meet in person. This gathering is open to young cryonicists from all cryonics organizations. Registered participants will also enjoy the opportunity to attend the Suspended Animation conference. You must be registered in advance to attend." As I noted last year, "this sort of event sounds like something worth making an institution in the community. Cryonics has a long way to go to become mainstream, but every step is a step closer. So many, many lives will be lost between now and the advent of working rejuvenation medicine - and the methodology presently exists to save those lives though cryonics. Most people are not aware of it or interested in it, however, and cryonics provision needs to be scaled up to handle the masses. Scaling is a trivial problem compared to convincing people that a viable workaround to death exists; as soon as there is desire for a product, there will be competition and development."

Link: http://www.alcor.org/blog/?p=1529

Longevity Meme Newsletter, January 24th 2011

Posted: at 6:12 pm

January 24th 2011

The Longevity Meme Newsletter is a weekly email containing news, opinions, and happenings for people interested in aging science and engineered longevity: making use of diet, lifestyle choices, technology, and proven medical advances to live healthy, longer lives. This newsletter is published under the Creative Commons Attribution 3.0 license. In short, this means that you are encouraged to republish and rewrite it in any way you see fit, the only requirements being that you provide attribution and a link to the Longevity Meme.



- A World Without Sleep
- The Ideas of Longevity Science are Spreading
- Reminder: Humanity+ Board Elections Open
- But Fifty Years From Now...


If we didn't need to sleep, our lives would effectively be nearly 30% longer: so much more time for everything. This and a few other thoughts on sleep can be found in the following Fight Aging! post:


"Removing the human need to sleep will undoubtedly happen at some point in the decades ahead of us. The potential economic benefits are vast, and so as soon as it becomes remotely plausible we will see tremendous investment in realizing whatever biotechnology ultimately makes it feasible. You might look at the present large and ongoing investment into developing sleep suppressant drugs that are free from significant side effects as a small foretaste of what is to come."


We are in the business of convincing the world that rejuvenation biotechnology is plausible, desirable, and can happen within our lifetimes if we stand up and help out. It's always good to see more discussion and awareness of these themes our there in the broader community - that is a sign of progress:


"When it's working, advocacy for longevity science funding and progress towards rejuvenation biotechnology is a steady process of growth; an accumulation of articles, conversions, acts of persuasion, and new advocates. It continues year after year, and perhaps it is sometimes hard to tell whether we're better placed in 2011 than we were in 2010, but we can certainly look further back to see clear and meaningful progress over the past five or ten years in public awareness of longevity science, media attention, and support for bold action in the scientific community science. Turning a formerly fringe idea into a mainstream vision for the future - persuading the world, in other words - doesn't happen overnight, sad to say. But it does happen, and it is well underway for the goal of greatly extended healthy longevity."


Humanity+ is holding its board elections over the next couple of weeks; if you're a member, don't forget to vote.


"Humanity+ is a long-standing transhumanist advocacy organization, formed in support of improving the human condition through applied science: extended healthy longevity, engineering the mind, the advent of strong AI, the elimination of disease and suffering, and so forth. ... A great deal of the advocacy process is a matter of slowly raising the water level of awareness and understanding - bootstrapping the size of the community and the breadth of information associated with it. Over the years advocates and supporters produce discussions, articles, and hold events: these form a diffuse and ever growing cloud of information. The larger the cloud, the easier it is for people to encounter your ideas, and the more receptive they will be when they dive in to find a great deal of material ready and waiting for them. In this respect, I think that Humanity+ and h+ Magazine are performing good work these days - increasing the size of the cloud, looking more professional while doing so, and maintaining a profile appropriate to a distributed non-profit whose leaders and activists are scattered across the world."


Considering the future and what needs to be done:


"I'm of the opinion that [the urge to hold back change] is a poison of this age. It's in the air, a toxin that seems right at home in the cultural background mix of NIMBY, death by precautionary principle, environmentalist Malthusianism, bioethicists whose funding depends on finding roadblocks, and comfortable, wrong-headed assumptions that next year will look just like last year. Vast numbers of people are trapped in the illusionary moment, fighting every change in an age of change - and there are so many of them that some little part of their attitudes inevitably seeps into every part of the grand multi-threaded conversation that is our culture. Even those parts that are ostensibly focused on achieving progress.

"While this all takes place, hovering over us all is the grand sword: that in fifty years, barring a big fat revolution in the entire ethos and strategic direction of the life science community, we're all dead or dying. There's your existential risk. A very large 'certainly dead, all of us, unless we do something' existential risk. Not a small or unknowable or yet to be quantified risk, but a certainty ... unless we act to develop rejuvenation biotechnology. So we can floor the pedal, or we can talk about why it's a terrible idea to floor the pedal without doing all sorts of other things first. I know which approach I think will dig us out of the hole we're in - and it's not the one that involves moving ahead slowly."


The highlights and headlines from the past week follow below. Remember - if you like this newsletter, the chances are that your friends will find it useful too. Forward it on, or post a copy to your favorite online communities. Encourage the people you know to pitch in and make a difference to the future of health and longevity!



Friday, January 21, 2011
Here is a short popular Russian press article on KrioRus, the Russian cryonics provider: "It's freezing outside for everyone - but a select few are hoping that the ice holds the key to eternal life. A cryonics firm on Moscow's outskirts has already consigned 15 Russians to the deep freeze in the hope of being reanimated in the future as medical science advances to extend the lives they have completed. Booking a place in the future doesn't have the sci-fi good looks one might hope for, with the company operating in a mundane industrial block. 'It's true, we aren't very glamourous here,' Valeria Praid, the [cryonics] firm's general director, member of the Russian Council of the Transhuman Movement, and futurologist told [the media]. ... Sceptics may point out that frozen people are dead people and so freezing bodies that can no longer sustain life is a futile exercise, but the issue is apparently more complex, and there are different kinds of scientifically recognised death: Clinical death - when the body stops functioning as a whole, but while many cells and organs continue to operate and their structures have not yet started deteriorating. Biological death - the partial destruction of the body's structures. Information-theoretic death - the destruction of the human brain (or any other cognitive structure) and the information within it to such an extent that recovery of the original person is ostensibly impossible. Cryonics, or biostasis, allows corpses somewhere between biological death and information-theoretic death to be preserved, presumably with hopes of revival." More public attention for the endeavor of cryonics is always a good thing.

Friday, January 21, 2011
Via EurekAlert!: "A new study reports on the success of growing human liver cells on resorbable scaffolds made from material similar to surgical sutures. Researchers suggest that this liver tissue could be used in place of donor organs during liver transplantation or during the bridge period until a suitable donor is available for patients with acute liver failure. ... liver cells have excellent regenerative potential making liver cell transplantation a viable therapeutic approach for patients with metabolic defects or fulminant hepatic failure as the native liver is preserved while liver dysfunction may resolve as regeneration occurs. ... Currently isolated liver cells are used for liver cell transplantation, but these cells suffer during cell isolation and cryopreservation, which is one reason there is limited success with this type of transplant procedure. ... In applying their tissue engineering approach, [the] researchers were able to successfully create new liver tissue providing a potential solution to the obstacles challenging liver cell transplantation. ... The team isolated liver cells from 12 human liver specimens with a viability of 82%. After a two-day culture period, liver cells formed tightly packed cellular aggregates, called spheroids, and took on a liver-like appearance. Human liver cells were distributed across a three-dimensional porous structure of the polymer scaffolding. From day two to four, the average number of spheroids more than doubled from 18 to 41 per visual field. ... Our experimental model represents a promising technique to culture human liver cells and prepare them for transplantation on a biodegradable polymer scaffold into the peritoneal cavity. Further studies are underway to confirm our results and may ultimately offer viable clinical options for liver cell transplantation in the future."

Thursday, January 20, 2011
There are a great many theories as to why the well-known gap between male and female longevity exists. Here, researchers look at differences in lifestyle choices and pin the blame on smoking and drinking: "Since the late 1990s there has been evidence that women now outlive men in all countries of the world. Historical records show that in Sweden, Denmark, Italy, The Netherlands, England and Wales, the life expectancy of women has exceeded that of men since the mid to late 18th century, and there has been speculation about the causes of gender differences since that time. Different explanations have been postulated for this gender gap, including biological factors. However, there is considerable variability, and sometimes rapid change, in the magnitude of the female mortality advantage over time and in different countries, a variability that poses challenges for simple biological explanations for the gender gap. Earlier research suggested that health behaviours, and particularly men's higher prevalence of smoking, were a major cause of gender differences in the US. Here, we use contemporary mortality data for 30 European countries to examine the extent to which men's higher mortality can be explained by smoking-related and alcohol-related deaths. ... Smoking-related deaths accounted for around 40% to 60% of the gender gap, while alcohol-related mortality typically accounted for around 20% of the gender gap. The range in the contribution of smoking-related deaths reflects gender differences in the uptake of smoking by gender in earlier decades."

Thursday, January 20, 2011
It has been known for a while that alpha-synuclein is important in Parkinson's disease, and here is insight into how the condition might spread within the brain once it gets started: "damaged alpha-synuclein proteins [can] spread in a 'prion-like' manner, an infection model previously described for diseases such as BSE (mad cow disease). ... This is a significant step forward in our understanding of the potential role of cell-to-cell transfer of alpha-synuclein in Parkinson's disease pathogenesis and we are very excited about the findings ... A previous observation that aggregated alpha-synuclein protein gradually appears in healthy young neurons transplanted to the brains of Parkinson's patients initially gave rise to the group's hypothesis of cell-to-cell protein transfer. The theory has now been tested in several cell culture experiments. ... We have now shown that alpha-synuclein not only can transfer from one cell to another, but also that the transferred protein can seed aggregation of alpha-synuclein in recipient cells as well. This could be an important mechanism for the spread of the pathology. ,... Transplant trials in mice [strengthened] the theory of cell-to-cell transfer ... Six months after Parkinson's disease model mice were transplanted with healthy dopamine neurons, we found that the new brain cells contained human alpha-synuclein, indicating cell-to-cell transfer from the host brain to the transplants."

Wednesday, January 19, 2011
The development of nanotechnology has great relevance to the future of healthy longevity; at its simplest, aging is a matter of atoms and molecules being out of place. As our ability to control the building blocks of matter improves, so too will medicine improve in leaps and bounds. Here is an interesting discussion from Nanowerk - experts in the field looking ahead to what is to come: " One of the beautiful things about biology is that biology functions at many different length scales, and all of those length scales are working together to make the being functional. So if you think about down to the molecular scale, to DNA and coding and genetic information, to protein that the genetic information codes, to tissues that it builds up to functional levels - you know, human beings walking around - it's pretty fascinating to think about how all that works together. But it is all basically encoded in these molecules within cells. ... I think the impact of nanoscience in medicine is going to grow dramatically over the next 10 to 20 years, especially in the field of regenerative medicine. Another thing that I am hopeful about is that we will be able to hijack the brilliant mechanisms of biology to construct for us functional non-biological nanosystems. ... one area that's absolutely ripe for incredible advances is the life sciences and medicine, where aggregations of individual nanodevices to create nanosystems will allow us to embrace, rather than run away from, the complexity of biological systems and will give us the tools, I believe, to understand and engineer biological circuitry, which as the root of systems biology and ultimately, I think, will give a technological foundation for personalized medicine. ... I believe that the broad umbrella of nanoscience is rapidly dissolving the traditional barriers between [disciplines], and maybe wiring them a bit together with the idea that now people are thinking about atoms and materials as arbitrary forms, not in the historical sense. Physicists are now using biological systems, and biologists are exploiting solid state devices and microfluidic devices within a myriad of research efforts. People are thinking much more broadly than in the past [and] I think it's the discoveries in science that are driving this direction. When I look at the students who are entering the university system, they're highly motivated by the idea of breaking down the normal barriers and focusing on the new scientific opportunities that emerge."

Wednesday, January 19, 2011
Are there practical, safe, comparatively simple ways to make human cells more resistant to damage, and thereby reduce the effects of aging and disease? Perhaps, and here is an example of this sort of research: researchers "have discovered a molecule that can make brain cells resistant to programmed cell death or apoptosis. ... This molecule, a tiny strand of nucleotides called microRNA-29 or miR-29, has already been shown to be in short supply in certain neurodegenerative illnesses such as Alzheimer's disease and Huntington's disease. Thus, the discovery could herald a new treatment to prompt brain cells to survive in the wake of neurodegeneration or acute injury like stroke. ... There is the real possibility that this molecule could be used to block the cascade of events known as apoptosis that eventually causes brain cells to break down and die. ... The researchers looked at a number of steps in apoptosis and found that miR-29 acts at a key point in the initiation of apoptosis by interacting with a group of genes called the BH3-only family. Interestingly, the microRNA appears to interact with not just one but as many as five members of that family, circumventing a redundancy that existed to allow cell death to continue even if one of them had been blocked." This is somewhat a damage resistance strategy - it doesn't block damage, but it stops a cell from destroying itself in response to damage. This may allow certain classes of cell to continue functioning usefully under some forms of attack (such as the neurodegenerative conditions mentioned above), but as a general strategy it has flaws - cells usually destroy themselves for good reason. Having malfunctioning cells stick around rather than remove themselves is not a good thing in most tissues.

Tuesday, January 18, 2011
We know that the cellular response to hypoxia appears to be involved in calorie restriction, possibly because it spurs greater housekeeping efforts - researchers can modulate or replicate some of the effects of calorie restriction by tinkering with hypoxia inducible factor 1 (HIF). Here is a different role for that family of proteins: "Adult stem cells must persist throughout life to ensure continuous replenishment of dead or damaged cells in various tissues of the body. While numerous studies have already begun to identify some of the factors and mechanisms that regulate long term function and survival of stem cells, there is still much to learn in this regard. A growing body of evidence suggests that various types of stem cells exist in a hypoxic microenvironment, which may be conducive to stem cell longevity. We have recently shown that the oxygen dependent transcription factor hypoxia inducible factor 1alpha (Hif1α) is essential for maintenance of functional levels of telomerase in murine embryonic stem cells (mES). Importantly, long-term proliferation of mES cells with reduced Hif1α levels led to telomere shortening and ultimately cell senescence. Studies by others over the past 10 years has also indicated that hypoxia and Hif expression are essential for self-renewal and are involved in the regulation of proliferation for some types of stem cells."

Tuesday, January 18, 2011
From Nanowerk: "Chemotherapeutics generally show a delicate balance between maintaining a high enough dose to kill cancer cells while avoiding a dose so high that it causes severe toxic effects. One of the many promises of nanomedicine is a class of nanoscale drug delivery vehicles that can pinpoint cancer cells and deliver their tumor-killing payload right into cancer cells with high efficiency and no side effects. As an example of how scientists are approaching this goal, [we] have provided a first report on in vivo cancer therapy with mesoporous hollow silica nanomaterials. Based on this novel silica nanorattle structure, the Chinese research team further extended their work to fabricate 'all-in-one' multifunctional gold nanoshells on silica nanorattles (GSNs) which combine remote-controlled photothermal therapy with chemotherapy - resulting in a 'magic bullet' to kill cancer cells. The results indicate that a combination of hyperthermia and chemotherapeutic agents is an encouraging approach to optimizing cancer therapy for the synergistic effects are greater than the two individual treatments alone. ... GSNs are a promising building block with many biomedical applications, such as biological imaging, thermal ablative cancer therapy and immunoassays. Due to the specific silica nanorattle core, GSNs are also promising as a versatile and multifunctional drug delivery platform for their high-payload delivery of various drugs into their targets."

Monday, January 17, 2011
Chronic low level inflammation is an important contributing process to aging - and many age-related conditions have an inflammatory component to their mechanisms. Present means of managing inflammation are very crude, and fail to benefit many patients, but more sophisticated methodologies are on the horizon: "Scientists have identified a protein that acts as a 'master switch' in certain white blood cells, determining whether they promote or inhibit inflammation. ... Inflammatory responses are an important defence that the body uses against harmful stimuli such as infections or tissue damage, but in many conditions, excessive inflammation can itself harm the body. In rheumatoid arthritis, the joints become swollen and painful, but the reasons why this happens are not well understood. Cells of the immune system called macrophages can either stimulate inflammation or suppress it by releasing chemical signals that alter the behaviour of other cells. The new study [has] shown that a protein called IRF5 acts as a molecular switch that controls whether macrophages promote or inhibit inflammation. The results suggest that blocking the production of IRF5 in macrophages might be an effective way of treating a wide range of autoimmune diseases, such as rheumatoid arthritis, inflammatory bowel disease, lupus, and multiple sclerosis. In addition, boosting IRF5 levels might help to treat people whose immune systems are compromised."

Monday, January 17, 2011
This open access review paper surveys current uses of nanotechnology in the research and development of cancer therapies: "Nanooncology, the application of nanobiotechnology to the management of cancer, is currently the most important chapter of nanomedicine. Nanobiotechnology has refined and extended the limits of molecular diagnosis of cancer, for example, through the use of gold nanoparticles and quantum dots. Nanobiotechnology has also improved the discovery of cancer biomarkers, one such example being the sensitive detection of multiple protein biomarkers by nanobiosensors. Magnetic nanoparticles can capture circulating tumor cells in the bloodstream followed by rapid photoacoustic detection. Nanoparticles enable targeted drug delivery in cancer that increases efficacy and decreases adverse effects through reducing the dosage of anticancer drugs administered. Nanoparticulate anticancer drugs can cross some of the biological barriers and achieve therapeutic concentrations in tumor and spare the surrounding normal tissues from toxic effects. Nanoparticle constructs facilitate the delivery of various forms of energy for noninvasive thermal destruction of surgically inaccessible malignant tumors. Nanoparticle-based optical imaging of tumors as well as contrast agents to enhance detection of tumors by magnetic resonance imaging can be combined with delivery of therapeutic agents for cancer. Monoclonal antibody nanoparticle complexes are under investigation for diagnosis as well as targeted delivery of cancer therapy. Nanoparticle-based chemotherapeutic agents are already on the market, and several are in clinical trials. Personalization of cancer therapies is based on a better understanding of the disease at the molecular level, which is facilitated by nanobiotechnology. Nanobiotechnology will facilitate the combination of diagnostics with therapeutics, which is an important feature of a personalized medicine approach to cancer."


Longevity Meme Newsletter, January 17th 2011

Posted: at 6:12 pm

January 17th 2011

The Longevity Meme Newsletter is a weekly email containing news, opinions, and happenings for people interested in aging science and engineered longevity: making use of diet, lifestyle choices, technology, and proven medical advances to live healthy, longer lives. This newsletter is published under the Creative Commons Attribution 3.0 license. In short, this means that you are encouraged to republish and rewrite it in any way you see fit, the only requirements being that you provide attribution and a link to the Longevity Meme.



- Aubrey de Grey in GQ Magazine
- Immune System Rejuvenation Through Selective Destruction
- "But what's a root canal?"
- Technical and Audience Information for Fight Aging!


Last year, GQ published an article on biomedical gerontologist and longevity science advocate Aubrey de Grey - and then never got around to republishing it online. Fortunately, scans of the article have now surfaced:


"De Grey likes to compare the future of treating aging to the time line of human-powered flight. For millennia, man dreamed of flying. Nothing happened. Five hundred years ago, Leonardo da Vinci presented detailed drawings of flying machines. Nothing happened. Then, in a mad rush, we catapulted from the Wright brothers to Lindbergh to the Concorde to the space shuttle.

"Fewer than sixty years have passed since Watson and Crick - modern medicine's Orville and Wilber - proposed the structure of DNA. Only seven years have passed since the Human Genome Project mapped our genetic sequence. Gene therapy wasn't even theorized until the 1960s. In the past few years, it's been used in major medical breakthroughs: It was used to cure squirrel monkeys of color blindness, and recently doctors in Paris used it to slow a fatal brain disease called X-linked adrenoleukodystrophy in young boys. What comes next, de Grey predicts, is a series of extraordinary medical progressions, each a further order of magnitude more sophisticated than anything available today."

If you like what you read, consider supporting de Grey's organization, the SENS Foundation:



As you age, your current population of immune cells stop being coordinated and aggressive defenders of your body, and start acting more like a crowd of lazy and confused bystanders. Your body doesn't replace them, however: the mechanisms that ensure you have a set of immune cells up and running don't check to see whether or not the present population of immune cells is doing a good job. Heads are counted, and if there are enough heads then no new immune cells are created.


"All is not gloom, however, and we can look ahead to very near-future biotechnologies that will address this issue and go some way towards restoring good immune function to the old. Scientists are in the midst of developing a new generation of technologies that can very precisely kill specific cell types - the cancer research community has been demonstrating targeted cell killing methods in the laboratory for some years now. These cell killing technologies are perfect for use in attempts to restore an age-damaged immune system to a more youthful state by culling the unwanted cells."

"I've been talking about this for a few years now, so I'm always pleased to see signs of progress in efforts to reverse declining immune response by selective destruction of immune cells. Here is an example of one early stage effort that demonstrates a benefit resulting from this approach: the researchers removed the existing population of immune cells, which caused the natural generation of a better-equipped replacement population of cells, and a consequently better immune system."


We are the last generation who will be familiar with the major procedures of modern dentistry - if you are in your twenties now, your children will never undergo root canal surgery, and their children won't even know what a root canal procedure is.


"Regenerative medicine and tissue engineering will transform the field of dentistry profoundly over the next two decades, and what little of the old that's left after that will be mopped up by biotechnologies that destroy the ability of harmful bacteria to thrive in your mouth. There will be no cavities or periodontitis, and where accidents cause damage, the teeth, bone, gum tissue, and related structures such as the ligaments that attach teeth to the jaw will be replaced anew with tissue grown from the patient's own cells."


Over the past month of work to merge the Longevity Meme into Fight Aging!, I've spent more time on the technical and web statistics side of the house. For those who are interested, here are two posts that provide a little background on the site:



The highlights and headlines from the past week follow below. Remember - if you like this newsletter, the chances are that your friends will find it useful too. Forward it on, or post a copy to your favorite online communities. Encourage the people you know to pitch in and make a difference to the future of health and longevity!



Friday, January 14, 2011
From KurzweilAI.net, a friendly interview with Max More, who was recently hired as CEO of cryonics provider Alcor: "I spent the last 10 or 11 years learning about business processes and culture, and have run some nonprofits before, but I'm looking forward to tackling the challenges. Fortunately, I'm far from alone in this responsibility. In addition to Alcor's highly experienced board of directors, my first week on the job demonstrated the dedication, skill, and helpfulness of Alcor's staff. While it takes a while to get up to speed on all the operational details of an organization like Alcor, I'm looking forward to working with the board to develop a renewed and refined strategic plan that will help us realize Alcor's huge potential to help far more people have a chance at renewed life in the future. ... My goal is really to maintain the traditions of Alcor, to protect its patients, but also to stimulate new growth, to improve the way everything functions, and to change the whole public perception to a much more positive view. Alcor is the most technologically advanced cryonics organization. We are on a path to continue improving our capabilities while doing our utmost to protect and preserve our existing cryopreserved members. ... the most important thing to me is making sure the organization is stable and will not get knocked out by financial or legal attacks or other issues. One of my top priorities is to make sure that we're stable for the long-term by either increasing income or reducing costs. ... Another priority is to restart growth. When I signed up as an Alcor member [for cryopreservation] in 1986 I was the 67th member. Since then, Alcor has grown to about 930 right now, and the number of cryopreserved people has gone from six to 102. At the Extropy Institute Extro conferences, if asked who were members, out of few hundred people, a majority would put up their hands, showing off their bracelets. Today, you don't get the same response - the recent growth has really slowed down. It seems ridiculous to me that in a world population of close to 7 billion, we only have 1000+ members signed up. I think we can do much better, starting with the most promising groups, such as transhumanists."

Friday, January 14, 2011
This paper suggests that modest benefits to life expectancy - and certainly to immune system health - could be made by establishing vaccine programs that continue throughout life, not just in childhood as is presently the case: "Infectious diseases remain a significant cause of [morbidity and mortality] in adults aged over 60 years, and many of these diseases are vaccine-preventable (VPDs). There is a pressing need to promote a lifelong vaccine schedule to increase vaccination against VPDs during the different stages of life. We outline the impact of vaccines on the burden of common infectious diseases and consider the negative clinical impact of VPDs in the unvaccinated population. We further illustrate that vaccine uptake is associated with a reduction in the burden of VPDs at any age of life, due to herd immunity. Disability-free and healthy aging is closely linked to childhood health and medical conditions in young adulthood. The midlife vaccine gap drastically impacts health in later life, especially in unvaccinated and older populations. These arguments underline the need for a preventive lifelong health perspective from childhood through old age."

Thursday, January 13, 2011
Local San Antonio media take a look at the work of the Barshop Institute for Longevity and Aging Studies: "Naked mole rats aren't much to look at. In fact, you might think the pink, wrinkly, squinty rodents are downright ugly. However, some researchers at the University of Texas Health Science Center at San Antonio feel otherwise ('I think they are incredibly cute,' says Zimbabwe-born scientist Rochelle Buffenstein as she tenderly picks up one of thousands squeaking and scurrying through a maze of tubes and plastic tubs). But it's not for their outward appearance that scientists are studying the rodents. Buffenstein and others look beyond the translucent skin and healthy tusks ('They've been called saber tooth sausages and worse,' she says) and see, if not the secret to eternal youth, a chance to cobble a few more decades onto our average 78-year lifespan. That would explain why the Barshop Institute for Longevity and Aging Studies at the UTHSC-SA maintains the world's largest colony of the naked rats. While not much larger than mice, which live around two years, these creatures keep active and healthy for as long as 30 years. And they have an amazing ability to fight cancer and toxins. This is just one of many areas of anti-aging research that's underway at the San Antonio research center. There's hope that scientists here will find a trigger or series of triggers in the human genetic code that could one day extend the 'youthspan' of people - giving people an extra 20 years, 40 years, maybe even longer, to be young and healthy. To be flip about it: researchers are hunting for the Fountain of Youth. And they're closing in. Discoveries are coming in at such a pace that Gen Xers may find themselves saddled with the Baby Boomers for longer than they had planned."

Thursday, January 13, 2011
More progress towards entirely artificial blood: "A team of scientists has created particles that closely mirror some of the key properties of red blood cells, potentially helping pave the way for the development of synthetic blood. ... researchers used technology known as PRINT (Particle Replication in Non-wetting Templates) to produce very soft hydrogel particles that mimic the size, shape and flexibility of red blood cells, allowing the particles to circulate in the body for extended periods of time. Tests of the particles' ability to perform functions such as transporting oxygen or carrying therapeutic drugs have not been conducted, and they do not remain in the cardiovascular system as long as real red blood cells. However, the researchers believe the findings - especially regarding flexibility - are significant because red blood cells naturally deform in order to pass through microscopic pores in organs and narrow blood vessels. Over their 120-day lifespan, real cells gradually become stiffer and eventually are filtered out of circulation when they can no longer deform enough to pass through pores in the spleen. To date, attempts to create effective red blood cell mimics have been limited because the particles tend to be quickly filtered out of circulation due to their inflexibility."

Wednesday, January 12, 2011
From EurekAlert!: researchers "have broken one of the major roadblocks on the path to growing transplantable tissue in the lab: They've found a way to grow the blood vessels and capillaries needed to keep tissues alive. ... The inability to grow blood-vessel networks - or vasculature - in lab-grown tissues is the leading problem in regenerative medicine today. If you don't have blood supply, you cannot make a tissue structure that is thicker than a couple hundred microns. ... As its base material, a team of researchers [chose] polyethylene glycol (PEG), a nontoxic plastic that's widely used in medical devices and food. ... the scientists modified the PEG to mimic the body's extracellular matrix - the network of proteins and polysaccharides that make up a substantial portion of most tissues. [They then] combined the modified PEG with two kinds of cells - both of which are needed for blood-vessel formation. Using light that locks the PEG polymer strands into a solid gel, they created soft hydrogels that contained living cells and growth factors. After that, they filmed the hydrogels for 72 hours. By tagging each type of cell with a different colored fluorescent marker, the team was able to watch as the cells gradually formed capillaries throughout the soft, plastic gel. To test these new vascular networks, the team implanted the hydrogels into the corneas of mice, where no natural vasculature exists. After injecting a dye into the mice's bloodstream, the researchers confirmed normal blood flow in the newly grown capillaries. Another key advance [involved] the creation of a new technique called "two-photon lithography," an ultrasensitive way of using light to create intricate three-dimensional patterns within the soft PEG hydrogels. ... the patterning technique allows the engineers to exert a fine level of control over where cells move and grow. In follow-up experiments [the] team plan to use the technique to grow blood vessels in predetermined patterns."

Wednesday, January 12, 2011
Via Depressed Metabolism, I see that cryonics technology company Suspended Animation is hosting a conference later this year: the company "will sponsor the conference, 'Suspended Animation - The Company and The Goal,' which will be held in Fort Lauderdale in May, 2011. The conference will feature speakers on the latest strategies and advances toward perfecting reversible human suspended animation. During the conference, SA will also host tours and demonstrations at its facility in Boynton Beach. ... Suspended Animation's 2011 conference has been designed to meet your needs. It will provide you with a comprehensive picture of the world of cryonics. It will reveal the scientific foundations of cryonics, the latest advances in cryopreservation research, and the scientific basis for thinking that revival from cryopreservation is a realistic possibility. It will give your desire for survival a jolt of reality that will make you realize that, while the path ahead is difficult, you can help to make it easier. .... [Greg Fahy will present] major new findings from Phase I of a revolutionary longterm project to achieve reversible whole-body solid state suspended animation in humans. This project, conducted at 21st Century Medicine, is the only whole body vitrification research being conducted in mammals and was funded entirely by a $5.6 million dollar grant from the Life Extension Foundation. Cryobiologist Greg Fahy will discuss how well whole animals can be cryopreserved right now, the possibility of using a single advanced vitrification solution to cryopreserve entire animals and, eventually, humans, and a unique, newly-invented technology to produce large, cryopreserved tissue slices for scanning and transmission electron microscopy."

Tuesday, January 11, 2011
An updated piece on Aubrey de Grey and the Strategies for Engineered Negligible Senescence from the BBC: "Nearly one in five people living in the UK will survive to see their 100th birthday, according to the government. But a Cambridgeshire academic who specialises in the ageing process says that effective medical care could make it possible to live much longer. Dr Aubrey de Grey said: 'I think the first person to live to 1,000 might be 60 already.' ... Dr de Grey is the chief scientific officer of the SENS Foundation (Strategies for Engineered Negligible Senescence) which carries out research into the prevention and cure of ageing. He agreed that the [government] figures were a reasonable projection but added that this was not a new idea. 'Longevity has been increasing by a couple of years each decade for more than 50 years now, due to the success we have had in keeping people from getting the diseases of old age, and in keeping them in better condition throughout their whole lives.' ... We will not be simply keeping people alive in a frail, sick state. We will be actually keeping them in a youthful state so that they have a low probability of dying each year. ... The medicines that I think are going to come along in the next 20 or 30 years are ones that not only slow down the ageing process and keep us from getting quite so sick, quite so young, but also reverse the ageing process. In other words, conduct periodic repair and maintenance at the molecular and cellular level, so that even if we have already accumulated some of the damaging effects of ageing we can be periodically fixed up - like any simple man-made machine. Once we get medicine like that, we should be in a very powerful position to keep people in a genuinely youthful state - not just looking young, but feeling young and functioning young - for as long as we like."

Tuesday, January 11, 2011
Here is a recent study of psychological resilience in centenarians: "Resilience, a psychological construct, has been defined differently in extant literatures. In this paper, we adopt the simplified and straightforward definition [that] resilience connotes the ability to adapt positively to adversity. Previous studies have demonstrated that resilience is generally positively correlated with cognitive function, physical health and self-reported health among the elderly, as well as with self-rated successful aging in developed countries. ... We aim to investigate whether centenarians are significantly more resilient than younger elders and whether resilience significantly contributes to exceptional longevity. ... We use a unique dataset from the Chinese Longitudinal Healthy Longevity Survey with the largest sample to date of centenarians, nonagenarians, octogenarians, and a compatible group of young old aged 65-79. ... Logistic regressions based on the cross-sectional sample show that after controlling for various confounders, including physical health and cognitive status, centenarians are significantly more resilient than any other old-age group. Logistic regression analyses based on the longitudinal data show that nonagenarians aged 94-98 with better resilience have a 43.1% higher likelihood of becoming a centenarian compared to nonagenarians with lower resilience. ... Resilience significantly contributes to longevity at all ages, and it becomes even more profound at very advanced ages. These findings indicate that policies and programs to promote resilience would have long-term and positive effects on the well-being and longevity for senior citizens and their families." There is of course a question of causation here: if you are more healthy throughout life, which people who become centenarians generally are, won't that make you better able to deal with the various other slings and arrows that come your way?

Monday, January 10, 2011
VIa Accelerating Future, I see that the nanorobotics chapter from the Future of Aging is available online: "Robert Freitas' book chapter for The Future of Aging compilation is now online. It looks very interesting. Freitas always produces fantastic work, that's one of the reasons Kurzweil constantly cites him. ... I talked to Freitas about this work, and he said, 'It's a major piece of work - a current update and the most comprehensive summary so far of the many potential applications of advanced diamondoid medical nanorobotics to conventional and anti-aging medicine.' ... Theoretical designs for diamondoid nanomachinery such as bearings, gears, motors, pumps, sensors, manipulators and even molecular computers already exist. Technologies required for the molecularly precise fabrication of diamondoid mechanical components and medical nanorobots, along with feasible strategies for the mass production of these devices, are the focus of active current research. This chapter describes a comprehensive solution to human morbidity and aging which will be attained when mankind has established control over all critical molecular events in the human body through the use of medical nanorobotics. Medical nanorobots can provide targeted treatments to individual organs, tissues, cells and even intracellular components, and can intervene in biological processes at the molecular level under direct supervision of the physician. Programmable micron-scale robotic devices will make possible comprehensive cures for human disease, the reversal of physical trauma, and individual cell repair."

Monday, January 10, 2011
Cells contain many swarming mitochondria - constantly reproducing by division and being culled by recycling mechanisms. These are the cell's power plants, the evolved remnants of symbiotic bacteria that contain their own DNA and toil to turn food chemicals into ATP. Mitochondrial DNA damage is important in aging, but it progresses in ways that are challenging to examine due to the nature of the mitochondrial life cycle. Here, researchers demonstrate a new application of technology that - even though focused on mitochondrial disease - will enable far more detailed research into mitochondrial damage and aging: "The trouble is that it's very difficult to extract single mitochondria from an individual cell. For years, the best technique has been to break open a group of cells and collect the mitochondria from all of them in a kind of soup. As you might guess, it's hard to determine which mitochondria came from what cells - yet that's what we need to know. ... The research team [has] potentially solved this problem by realizing that several devices and techniques can be used together to extract a single mitochondrion from a cell that possesses a genetic mutation. They employed a method previously used to extract single chromosomes from isolated rice cells where a laser pulse makes an incision in a cell's outer membrane. Another laser is used as a 'tweezer' to isolate a mitochondrion, which then can be extracted by a tiny pipette whose tip is less than a micrometer wide. ... This approach allowed the team to place a single mitochondrion into a small test tube, where they could explore the mitochondrion's genetic makeup by conventional means."


Longevity Meme Newsletter, January 10th 2011

Posted: at 6:12 pm

January 10th 2011

The Longevity Meme Newsletter is a weekly email containing news, opinions, and happenings for people interested in aging science and engineered longevity: making use of diet, lifestyle choices, technology, and proven medical advances to live healthy, longer lives. This newsletter is published under the Creative Commons Attribution 3.0 license. In short, this means that you are encouraged to republish and rewrite it in any way you see fit, the only requirements being that you provide attribution and a link to the Longevity Meme.

To subscribe or unsubscribe from the Longevity Meme Newsletter, please visit http://www.longevitymeme.org/newsletter/



- Support Real Progress in Life Extension
- The Simulation Argument
- Subtle Perils of Success
- The Road to Biological Joint Replacement
- Latest Headlines from Fight Aging!


A good motto to live by:


"As we start the new year, it is helpful to draw attention to the sobering fact that no credible human rejuvenation therapies are available today, and it is doubtful that such therapies will see the light of day in the short term. ... There is a broad consensus in the life extension community that more resources need to be allocated to combating aging as such, as opposed to increasingly futile efforts to extend life by treating aging-associated diseases. Unfortunately, the objective to launch a serious rejuvenation research program has limited mass appeal so far. As a consequence, we will have to get involved ourselves. Hopefully we can shift the focus from extensive hypothetical discussion about the consequences of human enhancement technologies to supporting and engaging in real experimental research to make these technologies facts of life."


The Simulation Argument is a rather doleful examination of what foreseeable future technologies might tell us about our existential condition:


"In essence, our present trajectory in technology suggests that there is nothing to prevent our descendants from running very detailed simulations of their past, including simulations of people - they will, after all, have access to staggering amounts of processing power, entire solar systems worth of matter converted into high grade nanoscale computing devices. Running a simulation of what is to them early civilized history would be a trivial expenditure given their vast resources, so they will probably do this many, many, many times. Therefore any random pick of what appears to be a human living in the natural universe is actually much more likely to be a simulated human living in a simulated environment.

"This is a modernized and somewhat gloomy brain in a jar scenario: more plausible, given its greater attachment to what we know about technology, and heavier on the existential angst. Either there is no golden future of humanity, or we're most likely participating in it already, but from inside the laboratory and cut off from that reality. Ghosts in the machine.

"[For all such considerations], I think that the best course is to proceed as though what we see is what we get - assume we are in the real world, in these imperfect bodies, faced with real versions of these real challenges of aging and death. To do otherwise is to relinquish our potential, to lie back and relax whilst we are quite literally fighting for our lives."


To be filed under "eating yourself to death, slowly":


"Advancing medical technology has brought tremendous and accelerating benefits to health and longevity over the past century. The staggering increases in wealth that support that advance introduce more subtle forms of risk to health and wellbeing, however - disease and ill health that is more a matter of what we do to ourselves than what is done to us by various pathogens. Type 2 diabetes, for example, is a lifestyle condition that is essentially caused by eating too much over a long enough period of time. Adopt the right lifestyle and you are very unlikely to suffer its effects. Yet so very many people have type 2 diabetes - and as the population of various regions of the world move from being poor to being wealthy, they suffer ever more from these sorts of medical conditions, even as their lifespans increase.

"It is clearly the case that failing to be more successful and wealthy than your ancestors is worse than having the opportunity to eat yourself into an expensive and debilitating degenerative condition - but why sabotage the benefits that you do have? Most of us should know better, but the siren call of low-cost calories and luxurious laziness is very effective. Still, it is a choice. We have willpower and the free will with which to use it. You can blame your genes and circumstances if you like, but that's just as much a choice as it is to surmount those challenges to stay lean and healthy."


Tissue engineers focused on the so far challenging area of growing new cartilage have made steady progress over the past few years. Now they're demonstrating some fairly advanced applications in laboratory animals:


"Artificial joint replacements can drastically change a patient's quality of life. Painful, arthritic knees, shoulders and hips can be replaced with state-of-the-art metal or ceramic implants, eliminating pain and giving a person a new lease on life. But, what if, instead of metal and plastic, doctors were able to take a patient's cells and grow an entirely new joint, replacing the old one with a fully functional biological joint? A team of University of Missouri and Columbia University researchers have found a way to create these biological joints in animals, and they believe biological joint replacements for humans aren't far away."


The highlights and headlines from the past week follow below. Remember - if you like this newsletter, the chances are that your friends will find it useful too. Forward it on, or post a copy to your favorite online communities. Encourage the people you know to pitch in and make a difference to the future of health and longevity!



Friday, January 7, 2011
While we're on the subject of mitochondrial processes leading to signals that change life span: "An unequivocal demonstration that mitochondria are important for lifespan comes from studies with the nematode Caenorhabditis elegans. Mutations in mitochondrial proteins such as ISP-1 and NUO-6, which function directly in mitochondrial electron transport, lead to a dramatic increase in the lifespan of this organism. One theory proposes that toxicity of mitochondrial reactive oxygen species (ROS) is the cause of aging and predicts that the generation of the ROS superoxide should be low in these mutants. Here we have measured superoxide generation in these mutants and found that it is in fact elevated, rather than reduced. Furthermore, we found that this elevation is necessary and sufficient for longevity, as it is abolished by antioxidants and induced by mild treatment with oxidants. This suggests that superoxide can act as a signal triggering cellular changes that attenuate the effects of aging. This idea suggests a new model for the well-documented correlation between ROS and the aged phenotype. We propose that a gradual increase of molecular damage during aging triggers a concurrent, gradually intensifying, protective superoxide response."

Friday, January 7, 2011
This is interesting research: scientists "used the roundworm Ceanorhabditis elegans to show that perturbing mitochondrial function in subsets of worm cells sent global signals governing longevity of the entire organism. ... In this study we show how signals sent from distressed mitochondria are communicated to distant tissues to promote survival and enhance longevity ... The identity of the signal sent from mitochondrially-distressed cells - a hypothetical factor Dillin calls a 'mitokine' - remains unknown. Nonetheless, he speculates that mitokines could one day be lobbed as messengers from healthy to unhealthy tissues to treat degenerative conditions. ... Imagine if we could perturb mitochondria in the liver, and make them send a mitokine to degenerating neurons. Instead of trying to get a drug into the brain, we could exploit the body's ability to send out a natural rescue signal. ... many investigators, Dillin included, have observed puzzling relationships between mitochondria, energy generation and longevity-interactions that suggest that living long does not necessarily require prospering at the subcellular level. ... As a postdoctoral fellow I did a screen looking for worm genes that increased longevity. Many genes were related to mitochondrial function. If you disabled them, worms lived longer, although their respiration or metabolism was reduced. We wondered whether this is why animals lived longer. ... To determine how cells respond to the pro-longevity cue, the group monitored a cellular emergency plan called the Unfolded Protein Response (UPR). Cells mount it when proteins accumulate excessively and begin to unravel - or 'misfold' - which is toxic to cells. To avert cell death, the UPR mobilizes a team of helpers who, like sales clerks at a Gap sweater table, refold accumulating misfolded proteins piling up inside a cell. When Dillin and colleagues fed worms reagents blocking the UPR, they found that disruption of [mitochondrial activity] in neurons or intestine no longer had a lifespan-enhancing effect. This dramatic finding illustrates that initiating refolding of proteins, in this case in response to faraway mitochondrial stress, is in fact the very activity that enhances longevity." You might compare this to the benefits of autophagy, another housekeeping and repair activity that takes place inside cells.

Thursday, January 6, 2011
Researcher Tom Kirkwood here argues that lack of progress in aging and longevity science is only one manifestation of our communal lack of interest in providing tools to enable a better life for the old and the frail: "Although there are many who think that ageing begins at 40, 50 or 60, we are learning that the underpinning mechanisms of ageing play out throughout the life course. Appreciating the life course nature of ageing helps surmount the objection sometimes raised against research on ageing, namely, that we should set a lower priority on research for old people who have had their 'innings' already. Indeed, if we can deliver a world that gives greater health to older people, it will be our children and grandchildren who will benefit the most. We age, not because our genes programme our death but because our bodies accumulate a growing burden of faults in their cells, tissue and organs. ... Often, a relatively simple modification of the environment can remove what was previously an insuperable obstacle, an obvious example being, for a wheelchair user, the provision of a ramp and a door wide enough to take a wheelchair. For a person with arthritis of the hand, use of a conventional mobile phone may be impossible, so such a person is disabled with respect to making telephone calls while on the move. However, simple technological solutions exist, at least in principle, for this problem. Technology, properly developed and applied, will liberate large numbers of older people from entirely unnecessary social isolation and enforced dependency. The result, even if the technology solutions were funded entirely by the state resources, would be savings in the provision of high- dependency support services that would easily repay the necessary investments. However, there is no need to see the future provision of technology solutions as requiring state support. The market opportunities for companies are enormous already and growing every year. It is hard to escape the impression that what is holding these developments back is nothing less than a pervasive lack of imagination, propelled perhaps by equally pervasive ageism. It is here that there is a role for us all in fighting for the necessary change in attitude and effective commitment to fresh action."

Thursday, January 6, 2011
From h+ Magazine: "People who are new to Humanity+ and to transhumanist thought in general might well be under the impression that the H+ movement is primarily an American beast. Optimism with regard to the future seems to be part of the American psyche, so I was surprised when I learned that H+ began its existence as the World Transhumanist Association, founded in the UK by philosophers David Pearce and Nick Bostrom in 1998. Ten years later, the organisation was renamed to Humanity Plus, and the first UK conference for H+ was held in London in April 2010. The first H+ conference of 2011 will also be held in London on January 29th, building upon the success of last year's meeting, and promises to be a fascinating exchange of ideas. ... [Amongst the topics] is the popular transhumanist topic of life extension. Dr Marios Kyriazis will be talking about how the convergence of different areas of science may allow dramatic life extension, and will briefly discuss some of the implications to our society. Following from Marios' talk, Dr Aubrey de Grey will give a presentation on some of the latest developments in the field of life extension, explaining that if we are able to extend our lives by more than one year per year of progress, we can achieve a longevity escape velocity and potentially live for a very long time indeed."

Wednesday, January 5, 2011
It is revealing that stem cell research into therapies for baldness attracts far more public and media attention than stem cell therapies for heart conditions - human nature and human priorities are not what they might be. That aside, progress is occurring here just as in other areas of regenerative medicine: "Common baldness could have its roots in a newly identified stem cell defect, a finding that could potentially lead to new hair-loss treatments down the road ... Researchers say they discovered that a cellular malfunction short-circuits the process by which hair follicle stem cells turn into hair-producing progenitor cells. That defect, rather than any loss of stem cells themselves, sparks the onset of androgenic alopecia, the medical term for a type of genetic hair loss that affects both men and women ... In men, this hair loss is commonly known as male pattern baldness, marked by the familiar receding hairline and thinning hair on top of the head - a condition that sometimes leads to complete baldness. In women, female-pattern hair loss causes the hair to get thinner all over but rarely leads to baldness. ... Previously we thought the stem cells were gone, and if that was the case it would be very difficult. But because they are present it should be possible to treat ... A complex series of analyses revealed that bald and haired tissue contain equivalent amounts of preserved stem cells, which give rise to progenitor cells. Bald tissue, however, did not contain the normal amount of progenitor cells, suggesting a malfunction in the normal behavior of hair follicle stem cells. ... The follicles that make hair don't go away completely, but they become miniaturized, to the point where the hair they normally make to replace hair when it naturally falls out becomes microscopic and therefore invisible."

Wednesday, January 5, 2011
Good measures of frailty in age, and good correlations with mortality rate, have been comparatively easy for the medical establishment to discover and verify - take grip strength, for example. Here is another: "In an analysis of nine studies involving more than 34,000 people age 65 and older, faster walking speeds were associated with living longer: Predicted years of remaining life for each age and both sexes increased as gait-speed increased, with the most significant gains after age 75. In addition, researchers found that predicting survival based on gait speed was as accurate as predictions based on age, sex, chronic conditions, smoking history, blood pressure, body mass index and hospitalization. ... Walking is a reliable tool to measure well-being [because] it requires body support, timing and power, and places demands on the brain, spinal cord, muscles and joints, heart and lungs. Slowing down is associated with getting older. By age 80, gait speed is approximately 10% to 20% slower than in young adults. ... In the study, gait speed was calculated using distance in meters and seconds. All subjects were instructed to walk at their usual pace and from a standing start. Average rate of speed was 3 feet per second (about 2 miles an hour). During the 14-year course of the study, there were 17,528 deaths. Those who walked slower than 2 feet per second (about 1.36 miles an hour) had an increased risk of dying. Those who walked 3.3 feet per second (about 2.25 miles per hour) or faster survived longer than would be expected by age or sex alone." Eliminating the slow spiral down into frailty and physical incapacity is one of the noble goals of longevity science.

Tuesday, January 4, 2011
Stem cells work to maintain your tissues, but their ability to carry out their job diminishes with age, causing a corresponding decline in tissue function. An understanding of why stem cell decline occurs is important in determining what to do about the problem. For example, if the problem is damage in the stem cells themselves, then replacement is a very viable option. If, however, the issue is caused by broader damage in supporting cell populations that leads important signaling processes and stem cell niches to run awry, a completely different strategy is needed. Researchers do not yet have a full understanding as to the mechanisms by which stem cells decline with age, but they are working on it: "Stem cell aging is a novel concept that developed together with the advances of stem cell biology, especially the sophisticated prospectively isolation and characterization of multipotent somatic tissue stem cells. Although being immortal in principle, stem cells can also undergo aging processes and potentially contribute to organismal aging. The impact of an age-dependent decline of stem cell function weighs differently in organs with high or low rates of cell turnover. Nonetheless, most of the organ systems undergo age-dependent loss of homeostasis and functionality, and emerging evidence showed that this has to do with the aging of resident stem cells in the organ systems. The mechanisms of stem cell aging and its real contribution to human aging remain to be defined. Many antitumor mechanisms protect potential malignant transformation of stem cell by inducing apoptosis or senescence but simultaneously provoke stem cell aging."

Tuesday, January 4, 2011
A short open access paper: "Defects in the DNA damage response often lead to an increased susceptibility to cancer, and so the DDR presents an interesting set of novel therapeutic targets. The maintenance of genomic integrity by the DDR has also been found to be involved in the process of organismal ageing. While the removal of cells containing damaged DNA can be beneficial in the prevention of cancer, it may contribute to both normal and pathological ageing. ... Given the frequency at which DNA lesions occur (approximately 10^4 per cell per day), a complex system of damage detection and repair is required in order to preserve the integrity of the genome. This system is termed the DNA damage response (DDR), and encompasses: the recognition of DNA damage; the transduction of signals through appropriate pathways; and the activation of cellular responses ranging from DNA repair and chromatin remodeling to the activation of cell death if the damage is irreparable. ... The maintenance of the DDR is essential for faithful replication of the genome, and so is critical for cellular survival. The loss of certain DDR components can lead to an increased susceptibility to cancer due to the ensuing genomic instability and the subsequent mutation to genes required for cellular replication and division. The DDR is also involved in the induction of senescence and apoptosis when the damage cannot be repaired. While this can prolong longevity during early stages of life due to the suppression of tumorigenesis, it may become detrimental in ageing due to the loss of stem and progenitor cells for renewal. This is a phenomenon referred to as antagonistic pleiotropy, and it highlights the importance of carefully balanced cell signaling cascades and regulatory systems in the maintenance of survival. Further studies of the roles of DDR-associated proteins, along with the discovery of new ones, will therefore not only enhance our understanding of cancer and mechanisms to treat it, but will also enhance our understanding of the ageing process. This may uncover ways to treat premature ageing or other age-related pathologies, such as the decline of the immune system in the elderly."

Monday, January 3, 2011
From the Boston Globe: "The dream of regenerative medicine is that it will one day be possible to replace flawed tissues - to create a new spinal cord, repair a defective heart, or regrow a limb. But as scientists make steady progress toward that tantalizing goal, some are studying a range of simple organisms, from tadpoles to salamanders to flatworms, that can already rebuild complete limbs or tails. In his laboratory at Tufts University, biology professor Michael Levin is investigating an often-overlooked mechanism that may play a key role in triggering this regenerative capacity in such critters: electrical signals. When people think of electricity in the body, they usually think of brain and nerve cells, or muscles. But Levin and other scientists study the bioelectrical signals that exist in all cells, and the role those play in allowing organisms to generate precise, functional replacements for body parts. ... Levin has altered the electrical signaling in cells and observed dramatic effects: A tadpole can regenerate a completely normal tail after it has lost that ability. ... Levin and colleagues triggered that regeneration using drugs that affected the bioelectrical signaling in tadpoles. The drug increased the transport of sodium into cells, triggering the tadpoles to regrow perfectly formed tails, which include a complex mixture of tissues including spinal cord, muscle, and skin. Levin's hope is that electrical signals might be a master switch that allows the organism to boot up its regenerative program, rather than requiring scientists to build a new organ or appendage cell by cell."

Monday, January 3, 2011
Longevity may or may not be advantageous from an evolutionary point of view - it depends on the circumstances, which is why we see a wide variety of life spans in nature. Many species can be genetically altered in minor ways to live for longer in good health. One possible reason why these longevity-enhancing mutations don't occur in nature is that they may diminish an organism's reproductive vigor while young: "Reduced fecundity has been associated with some alleles that enhance longevity in invertebrate and mammalian models. This observation has been suggested to support the antagonistic pleiotropy theory of aging, which predicts that alleles of some genes promoting fitness early in life have detrimental effects later in life that limit survival. In only a few cases, however, has the relative fitness of long-lived mutants been quantified through direct competition with the wild type genotype. Here we report the first comprehensive analysis of longevity/fitness trade-offs by measuring the relative fitness of 49 long-lived yeast variants in a direct competition assay with wild type cells. We find that 32 (65%) of these variants show a significant defect in fitness in this competition assay. In 26 (81%) of these cases, this reduction in fitness can be partially accounted for by reduced maximal growth rate during early life, usually resulting from a G0/G1-specific cell cycle defect. A majority of the less fit longevity-enhancing variants are associated with reduced mRNA translation. These findings are therefore consistent with the idea that enhanced longevity often comes with a fitness cost and suggest that this cost is often associated with variation in a subset of longevity factors, such as those regulating mRNA translation, growth, and reproduction."


Longevity Meme Newsletter, January 3rd 2011

Posted: at 6:12 pm

January 3rd 2011

The Longevity Meme Newsletter is a weekly email containing news, opinions, and happenings for people interested in aging science and engineered longevity: making use of diet, lifestyle choices, technology, and proven medical advances to live healthy, longer lives. This newsletter is published under the Creative Commons Attribution 3.0 license. In short, this means that you are encouraged to republish and rewrite it in any way you see fit, the only requirements being that you provide attribution and a link to the Longevity Meme.

To subscribe or unsubscribe from the Longevity Meme Newsletter, please visit http://www.longevitymeme.org/newsletter/



- Wealth Does Not Grant Vision
- A Little Nihilism for a Cold Monday
- The Methuselah Foundation Needs a Technical Volunteer
- Fundraising for Microglia Transplant Research
- Latest Headlines from Fight Aging!


All that wealth gives you is a lever - it provides neither the will, foresight, or knowledge needed to use that lever in a way that will benefit all of humanity:


"I think there's a certain tendency to believe that wealthy people have attributes and talents that in fact they don't possess: they have a great deal of one important thing, so therefore they must have more of all the others, right? But across a broad spectrum of the wealthy, you are probably not going to see greater intelligence, drive, wit ... or vision. Wealth doesn't grant you any of these things if you didn't have them beforehand, and a few decades of being alive and socially active should teach you that none are a necessary prerequisite for becoming wealthy. I'm not even all that certain that they help.

"If you think over your experiences in talking about longevity science with people, you're probably in just the same boat as me: most of the folk you'll meet don't believe that near-term progress is possible, don't like to think about aging and death anyway, and are locked into a view of their own lives that has them progressing and ending just like those of their grandparents. There is no vision, they learned the shape of the box they will live in while they were young and in school, and have little interest in change. In this, your friends and acquaintances are not at all different from any given selection of high net worth individuals. ... So why be disappointed that those high net worth individuals are just as unlikely to help of their own accord, or understand the possible future of rejuvenation biotechnology? Wealth is not magic gold and blessings from the fae; these people grew up in the same society as the rest of us, and thus are on average just as blinkered - in need of education and persuasion - when it comes to aging and longevity science."


Nihilism, yes, but also interesting reading material:


"It is fairly easy to slide from the question 'why live longer?' to the question 'why live?' If you're not so sold on being alive at the present time, it may follow that you're also not so much in favor of being alive for longer in the future. Sadly, many people are on the fence when it comes to their continued existence as thinking, conscious entities: ambivalent until threatened with impending death, at which point deep-seated survival instincts take over, but ultimately vaguely looking forward to their end. Others call into question the morality of creating new people when they are doomed to inevitable suffering and death, and this cheerful topic leads us to a brace of posts at Depressed Metabolism."

You should take a look.


Are you smart, reliable, and skilled with LAMP (Linux, Apache, MySQL, and PHP) coding and development? If so, the Methuselah Foundation has need of you:


"The Methuselah Foundation, founded back in 2003, aims to promote and support scientific progress towards defeating age-related disease, repairing the damage of aging, and greatly extending the healthy human life span. To that end the Foundation has raised more than $10 million in funding pledges, and their initiatives include the Mprize for longevity science, the recently launched NewOrgan Prize, investment in tissue engineering startups such as Organovo, and - prior to the establishment of the SENS Foundation as a separate entity - the funding of Aubrey de Grey's research program for rejuvenation biotechnology.

"These activities, and the networking to support them behind the scenes, have had a great impact upon the state of the aging research community, media treatment of longevity science, and public perception of the plausibility of medical research aimed at reversing aging. Thanks to the efforts of the Foundation volunteers and thousands of supporters, the environment for longevity science today is far improved over that of ten years ago. That in turn means that our chances of seeing working rejuvenation medicine within our lifetimes are also improved.

"A brief inspection of the website will tell you that the Foundation runs on a LAMP stack - Linux, Apache, MySQL, and PHP. What you won't see is the largely invisible bulk of packaged code, integrations, mail, archives, and other systems required to run a distributed volunteer non-profit organization. Add that to the newer online projects in the works or on the drawing board, and keeping things running as well as moving forward begins to require a considerable amount of time from people who know how to code or maintain a server. ... From a practical standpoint, this means is that the Foundation needs a reliable, smart volunteer programmer: someone who is comfortable building their own websites from scratch, working independently as a part of a geographically distributed team, can contribute to the process of developing plans and designs, and confidently touch every part of the LAMP stack in the doing of it."


The Immortality Institute's latest fundraising project aims to raise $8,000, which will be matched by another $8,000 from the Institute coffers. This money will fund a research project to evaluate transplant of microglia as a way to attack some of the damage that builds up in an aging brain:


"Cognitive functions of the brain decline with age. One of the protective cell types in the brain are called microglia cells. However, these microglia cells also loose function with age. Our aim is to replace non-functional microglia with new and young microglia cells derived from adult stem cells. We will inject these young microglia cells into 'Alzheimer mice' - a model for Alzheimers disease. After giving the cells some time to work, we will sacrifice the mice and measure microglia activity, neurogenesis, proliferation of neuroprogenitors and plaque density in the brain. A reduction in plaque density of Alzheimer mice would be a first proof that the transplanted microglia are performing their expected function.

"The full PDF format research proposal is available: the work will be carried out by a graduate research assistant and will cost $16,000. This is the essence of our present era of biotechnology: a task that would have occupied a whole laboratory and its equipment in the 1980s, and cost a great deal of money if it was even possible at all, is now something that a skilled graduate-level life scientist can organize and run himself within an established lab. The times are changing - and this plummeting cost of research will only continue."

If you think this is beneficial, then donate! Modest donations from dozens of people have raised a quarter of the needed total already, so jump in and help out.


The highlights and headlines from the past week follow below. Remember - if you like this newsletter, the chances are that your friends will find it useful too. Forward it on, or post a copy to your favorite online communities. Encourage the people you know to pitch in and make a difference to the future of health and longevity!



Friday, December 31, 2010
A response to recent arguments on the biological basis for women's longevity advantage: "The most influential line of reasoning in gerontology is known as Disposable Soma Theory (DST). In brief, the theory states that aging is caused by accumulation of random damage, which is counteracted by repair. Repair is costly and the organism allocates exactly the needed amount of energetic resources. Recently, DST was applied to explain why women live longer than men. Women are less disposable than men, so they need a better repair and thus live longer. It might seem slightly repetitive that women live longer because they are less disposable because females need better health for reproduction. I will discuss that this explanation is also erroneous. But to start with, the name of the theory (disposable soma) is ambiguous because soma is disposable by definition: soma versus germ line. All theories of aging are more or less disposable soma theories. ... The question is why is soma disposable and what makes it disposable. According to DST, it is allocation of resources from repair to other needs. Here we will discuss drastically different cause. ... So why do women live longer? ... In brief, high accidental death rate is associated with faster aging in different species, from worms to mammals. The same is applicable to longevity of males versus females. The accidental death rate, from accidents, violence, combat, is higher in young men than in women. Historically, it was much higher. Higher accidental death rate in young men may have led them to be larger and stronger than women. ... mTOR drives cellular size growth and muscle hypertrophy, including testosterone-induced hypertrophy ... I suggest that hyper-active mTOR contributes to physical robustness of young males, allowing them to fight and compete. But hyper-active mTOR is beneficial earlier in life at the cost of accelerated aging. ... In other words, accelerated aging in males relative to females could be a byproduct of physical robustness to prevent death from extrinsic causes." As you can see there is still plenty of room for debate in even apparently simple, straightforward questions in aging science.

Friday, December 31, 2010
A recent review: "It has been almost two decades since dietary restriction was first shown to increase Drosophila lifespan. Since then, understanding this phenomenon advanced as groups worked to identify what quality of restricted diet matters: calories or a specific nutrient. The problem is complex because is it difficult to measure what a fly actually consumes. A powerful solution uses the geometric framework of nutrition where diets in many combinations can be tested for their effects on lifespan and reproduction while measuring intake. Applied to Drosophila, it is now clear that specific nutrients, not calories, mediate longevity. The geometric framework also reveals a nutritional basis for the trade-off between reproduction and lifespan. This complements a stable isotope analysis that tracked the allocation of nitrogen, carbon and essential amino acids into eggs versus reproduction. Together these studies show this is not possible to explain how DR extends lifespan through a mechanism were resources are simply reallocated to somatic maintenance away from reproduction. Although promising in principle, genetic analysis of DR mechanisms has had limited success. To be productive studies must include enough diets at appropriate concentrations. In reviewing the best data, there is little evidence to date for any gene to be required for DR to increase Drosophila lifespan [as opposed to the situation in nematode worms], including insulin signaling or 4eBP. Strong analyses of genes required for DR should be a priority in future research with Drosophila and this may be made most robust by considering the effect of mutants in the context of the geometric framework."

Thursday, December 30, 2010
Long term projections of life span continue to trend upward as the actuaries revise their opinions on biotechnology - but I believe they still fail to account for potential revolutionary advances in medicine that lie ahead. The level of uncertainty at least is fairly well grasped now within the actuarial industry, but for various political reasons it is only slowly seeping into official projections: "In the first official projection of its kind, the Department for Work and Pensions today forecasts that almost a fifth of Britons will celebrate their 100th birthday. Of the 17 per cent of the population who will become centenarians, about three million are under the age of 16, and 5.5 million are aged between 16 and 50. In total, about half a million people a year will be celebrating their 100th birthday by 2066, compared with about 10,000 now. Nearly 8,000 of them will reach their 110th birthday. ... Predicting the rate of increase of life expectancy used to be much easier because the rate of increase did not vary much. But some areas of biotechnology are increasingly driven by the same kinds of advances that make computer power increase so rapidly. ... It is difficult to look down the road 20 years and guess every way that biological manipulations will speed up by orders of magnitude or which treatments will become very easy as a consequence. But it seems reasonable to expect that in the 21st century we will experience a revolution in biotechnology in par with the revolution in computer technology that began in the middle of the 20th century and continues to this day." Retirement as an institution will radically change, and those countries that practice the iniquity of forcing people out of work at a certain age will also have to change.

Thursday, December 30, 2010
This study looks for measures that might reflect rates at which new medical technology makes its way into the marketplace, and checks for correlation with rising life expectancy. The result is what you might expect - that more rapid adoption of new technology means longer lives: "The rate of increase of longevity has varied considerably across U.S. states since 1991. This paper examines the effect of the quality of medical care, behavioral risk factors (obesity, smoking, and AIDS incidence), and other variables (education, income, and health insurance coverage) on life expectancy and medical expenditure using longitudinal state-level data. We examine the effects of three different measures of the quality of medical care. The first is the average quality of diagnostic imaging procedures, defined as the fraction of procedures that are advanced procedures. The second is the average quality of practicing physicians, defined as the fraction of physicians that were trained at top-ranked medical schools. The third is the mean vintage (FDA approval year) of outpatient and inpatient prescription drugs. Life expectancy increased more rapidly in states where (1) the fraction of Medicare diagnostic imaging procedures that were advanced procedures increased more rapidly; (2) the vintage of self- and provider-administered drugs increased more rapidly; and (3) the quality of medical schools previously attended by physicians increased more rapidly. States with larger increases in the quality of diagnostic procedures, drugs, and physicians did not have larger increases in per capita medical expenditure. We perform several tests of the robustness of the life expectancy model. Controlling for per capita health expenditure (the 'quantity' of healthcare), and eliminating the influence of infant mortality, has virtually no effect on the healthcare quality coefficients. Controlling for the adoption of an important nonmedical innovation also has little influence on the estimated effects of medical innovation adoption on life expectancy."

Wednesday, December 29, 2010
Failing grip strength in older people is a good biomarker for frailty in all bodily systems and consequently higher mortality levels. Separately, advanced glycation end-products (AGEs) accumulate in the body's tissues with age, and impact a number of important biological processes - so we'd expect to see correlation between rising AGE levels and failing grip strength even if they have no direct link and are completely distinct aspects of age-related degeneration. Here, researchers show that this correlation stretches back into earlier adult life: "Aging is associated with decreased skeletal muscle function. Increased levels of advanced glycation end products (AGEs) in skeletal muscle tissue are observed with advancing age and in diabetes. Although serum AGE level is negatively associated with grip strength in elderly people, it is unknown whether this association is present in adult males. To determine the relationship between AGE accumulation in tissue and muscle strength and power among Japanese adult men. Skin autofluorescence (AF) (a noninvasive method for measuring tissue AGEs), grip strength, and leg extension power were measured in Japanese adult men ... Among Japanese adult men, participants with higher skin AF had lower muscle strength and power, indicating a relationship between AGE accumulation and muscle strength and power. A long-term prospective study is required to clarify the causality." If forced to guess, I'd suggest that the other biochemical and cellular causes of aging have a greater impact than AGEs on muscle strength - but that remains to be established, and we should still be trying to fix everything regardless of the outcome of that investigation.

Wednesday, December 29, 2010
The cellular recycling process of autophagy appears to be important in many of the known methods of slowing aging through manipulation of metabolism. AMPK is a protein involved in the control of metabolism that is important and of interest in aging research, and this may be because of its influence over autophagy: researchers "have discovered how AMPK, a metabolic master switch that springs into gear when cells run low on energy, revs up a cellular recycling program to free up essential molecular building blocks in times of need. ... AMPK activates a cellular recycling process known as autophagy by activating an enzyme known as ATG1, that jumpstarts the process. The newly uncovered direct molecular connection between AMPK and ATG1 is significant because dysfunctions in both AMPK signaling and autophagy are implicated in a plethora of aging-related diseases, including type II diabetes, cancer, and neurodegenerative diseases such Parkinson's and Alzheimers. ... the group focused on large intracellular structures called mitochondria, whose role is to generate energy. ... Mitochondria are easily damaged in detoxifying tissues like liver. A critical way that defective mitochondria are turned over is through a special form of autophagy called mitophagy. ... In that case, cells would envelope their unhealthy mitochondria in a membrane, dump them in a cellular acid pit, and recycle the remains. If AMPK initiated the process, cells genetically engineered to lack AMPK might show altered mitochondrial turnover compared to normal cells. And that is precisely what the researchers saw: liver cells in which AMPK had been eliminated contained too many mitochondria, many of which looked spindly, indicating they were moribund, and confirming that AMPK was directing autophagic waste disposal."

Tuesday, December 28, 2010
A range of biological differences have been noted that distinguish exceptionally long-lived families from the rest of us poor mortals. Here is another: "The development of medical interventions for the preservation of disease-free longevity would be facilitated by markers that predict healthy aging. Altered protein N-glycosylation patterns have been found with increasing age and several disease states. Here we investigate whether glycans derived from the total glycoprotein pool in plasma mark familial longevity and distinguish healthy from unhealthy aging. Total plasma N-glycan profiles of 2396 middle aged participants in the Leiden Longevity Study (LLS) were obtained... After normalization and batch correction, several regression strategies were applied to evaluate associations between glycan patterns, familial longevity and healthy aging. Two N-glycan features (LC-7 and LC-8) were identified to be more abundant in plasma of the offspring of long-lived individuals as compared to controls. ... Furthermore, a decrease in levels of LC-8 was associated with the occurrence of myocardial infarction, indicating that plasma glycosylation patterns do not only mark familial longevity, but may also reflect healthy aging. In conclusion, we describe two glycan features, of which increased levels mark familial longevity while decreased levels of one of these features mark the presence of cardiovascular disease."

Tuesday, December 28, 2010
From Michael Batin, and machine-translated: "For the Foundation Science for Life Extension, the main outcome [for this past year] was the first Russian unique operation on transplantation of the trachea, grown from [the patient's own stem cells]. Operation using the method of Professor Paolo Macchiarini held in December in Research Center of Surgery named after Academician BV Petrovsky, RAMS (Moscow). In order to bring this technique to Russia, the Foundation has worked a half years. We fully fund the project and organize the interaction of all participants - RAMS RNTSH, Clinics Karredzhi University of Florence, pharmaceutical companies, manufacturers of biomaterials. Total project costs amounted to around 250 thousand euros. ... Patient was a 26-year-old girl. In 2006, she was hit by a car, she was very seriously injured, survived clinical death, a few months has been in a coma. Breathe on their own she could not ... Now the patient before discharge - she can speak much better breathing, can walk and perform physical activity. ... This operation - the beginning of the introduction into clinical practice of regenerative medicine technologies, which opens up broad prospects for the treatment of serious illnesses associated with the loss of vital organs and tissues, and allows scientific and clinical institutions of Russia to enter the International Consortium for Regenerative Medicine." The process used here is decellularization, in which a donor trachea is stripped of its cells, leaving only the structure of the extracellular matrix. That is then repopulated with the patient's own cells, which avoids the normal issues of transplant rejection.

Monday, December 27, 2010
Researchers look for root causes of the longevity enhancement produced by eliminating the male contribution to the mouse genome: "A recent study by Kawahara and Kono (2010) reports that mice artificially produced with two sets of female genomes have an increased average lifespan of 28%. Moreover, these animals exhibit a smaller body size, a trait also observed in several other long-lived mouse models. One hypothesis is that alterations in the expression of paternally methylated imprinted genes are responsible for the life-extension of bi-maternal mice. Considering the similarities in postnatal growth retardation between mice with mutations in the Rasgrf1 imprinted gene and bi-maternal mice, Rasgrf1 is the most likely culprit for the low body weight and extended lifespan of bi-maternal mice. Rasgrf1 is a neuronal guanine-nucleotide exchange factor that induces Ras signaling in a calcium-dependent manner and has been implicated in learning and memory. Like other long-lived mouse strains, Rasgrf1 mutants are known to have low growth hormone and IGF-1 levels and the Rasgrf1 yeast homolog CDC25 had been previously associated with lifespan. Therefore, although the evidence is not conclusive, it does point towards the involvement of Rasgrf1 in the regulation of longevity, hypothetically through a mechanism similar to that observed in other long-lived mice of low GH/IGF-1 signaling causing a low body weight and life-extension."

Monday, December 27, 2010
One view of strategy in the development of calorie restriction mimetic treatments: "Calorie restriction (CR) remains the most robust environmental intervention for altering aging processes and increasing healthspan and lifespan. Emerging from progress made in many nonhuman models, current research has expanded to formal, controlled human studies of CR. Since long-term CR requires a major commitment of will power and long-term negative consequences remain to be determined, the concept of a calorie restriction mimetic (CRM) has become a new area of investigation within gerontology. We have proposed that a CRM is a compound that mimics metabolic, hormonal, and physiological effects of CR, activates stress response pathways observed in CR and enhances stress protection, produces CR-like effects on longevity, reduces age-related disease, and maintains more youthful function, all without significantly reducing food intake. Over 12 years ago, we introduced the concept of glycolytic inhibition as a strategy for developing mimetics of CR. We have argued that inhibiting energy utilization as far upstream as possible might offer a broader range of CR-like effects as opposed to targeting a singular molecular target downstream. As the first candidate CRM, 2-deoxyglucose, a known anti-glycolytic, provided a remarkable phenotype of CR, but turned out to produce cardiotoxicity in rats. Since the introduction of 2DG as a candidate CRM, many different targets for development have now been proposed at more downstream sites, including insulin receptor sensitizers, sirtuin activators, and inhibitors of mTOR."


Mercury-Caused Endocrine Conditions Causing Widespread Adverse Health Effects

Posted: at 6:12 pm

Mercury-Caused Endocrine Conditions Causing Widespread Adverse Health Effects, Cognitive Effects, and Fertility Effects B.Windham(Ed.)http://www.home.earthlink.net/~berniew1/endohg.html

As will be documented in this paper, the majority of the population receives significant mercury exposures and significant adverse health effects are common. Mercury has been found to be an endocrine system disrupting chemical in animals and people, disrupting function of the pituitary gland, thyroid gland, thymus gland, adrenal gland, enzyme production processes, and affecting many hormonal functions at very low levels of exposure . The main factors determining whether chronic conditions are induced by metals appear to be exposure and genetic susceptibility, which determines individuals immune sensitivity and ability to detoxify metals(405). Very low levels of exposure have been found to seriously affect large groups of individuals who are immune sensitive to toxic metals, or have an inability to detoxify metals due to such as deficient sulfoxidation or metallothionein function or other inhibited enzymatic processes related to detoxification or excretion of metals. Read more...

Ayurtox for Body Detoxification

Drink your sleep troubles away: tart cherry juice helps beat insomnia

Posted: at 6:12 pm

Millions of Americans have difficulty falling asleep or staying asleep, resulting in excessive fatigue and even more serious consequences. According to the Centers for Disease Control (CDC): "Insufficient sleep is associated with a number of chronic diseases and conditions such as diabetes, cardiovascular disease, obesity, and depression...it is also responsible for motor vehicle and machinery-related accidents."

Of course, Big Pharma has come up with a huge array of supposedly easy solutions for those who have a hard time getting enough shut-eye. All you have to do is pop a pill such as the heavily hyped Sonata, Rozerem, Lunesta or Silenor and you'll soon be snoozing away happily, the drug advertisements promise. Of course, you might decide that's not the healthiest idea if you check out the side effects which can include hallucinations, thoughts of suicide, loss of coordination, fever, "sleep driving" while not fully awake and memory problems. Read more...

Immunice for Immune Support

The LinkedIn Cell Therapy Industry Group – 1,000 members strong

Posted: at 6:12 pm

As some of you may know, much of my recent social media energy has been spent on LinkedIn rather than blogging. This was not a conscious decision but I will admit to finding the immediacy and interconnectivity of the LinkedIn/Twitter combo to be more seductive of my limited time than the more laborious and seemingly more unidirectional facets of blogging. I'm still working on a return to more diligent and regular blogging - we'll see how that goes.

In any event, today's blog entry is ironically about the very thing which has replaced my blogging in many ways for the interim: the LinkedIn Cell Therapy Industry Group which I founded in July 2008 (about the same time as I launched this blog).
Primarily due to the outstanding participation of great members, the group has turned out to be what I had hoped would be and I believe has become a fairly valuable resource for those in or interested in the cell therapy industry.
The group grew exponentially throughout 2010 and we are proud today to announce our 1,000th member. Without his knowledge, Luc Gervais today became the 1,000th member of the LinkedIn Cell Therapy Industry Group.
Luc Gervais lists himself on LinkedIn as a "Technologist Entrepreneur" but is also a Researcher at IBM Research, Zurich Research Laboratory in addition to being a researcher at the University Hospital Basel.
He was recently involved in the development of IBM's novel, microfluidic "lab on a chip" technology that uses capillary action to create a potential one-step diagnostic tool, and which could ultimately test for a wide range of diseases and viruses. The chip requires only a small drop of blood, which it draws through tiny channels within the device. The blood reacts with different disease markers to provide accurate diagnoses in about 15 minutes.
Luc represents what I believe is one of the most exciting signs of development in and maturation of the cell therapy industry. Luc's career has included being a Game Developer at Unlikely Games, a Computational Chemistry Developer at Boehringer Ingelheim Pharmaceuticals, and a Quality Assurance Specialist at Steltor. On LinkedIn, he lists "regenerative medicine" as one of his interests.
People with the kind of experience Luc possesses are bringing a world of scientific, technical, and commercial expertise to regenerative medicine and cell therapy from outside the sector. This promises to revolutionize the way we think about, develop, and apply our technologies.
Luc and others like him who are exploding into the regenerative medicine and cell therapy field bring with them the potential for interdisciplinary exploration, the opportunity to draw from lessons already learned in other sectors, and the chance to view our field not just in terms of the incredible potential for new therapeutics which cell therapy represents but how that fits into the broader world in which cell therapy is growing up. A world that includes phenomenal advancements in personalized medicine, diagnostics, theranostics, biomarkers, bioinformatics, the ability to access and interpret personal genomics data, etc.
I have yet to speak to Luc (this was all posted from publicly available information) but I'm hoping to bring you an interview of him shortly not because being the 1,000th member of the LinkedIn Cell Therapy Industry Group is deserving of any particular attention (and certainly will not rank in his list of accomplishments I'm sure) but because I'm curious about what Luc represents.
Stay tuned....
http://www.celltherapyblog.com hosted by http://www.celltherapygroup.com

How to Fix the Obesity Crisis (preview)

Posted: at 6:11 pm

Obesity is a national health crisis--that  much we know. If current trends continue, it will soon surpass smoking in the U.S. as the biggest single factor in early death, reduced quality of life and added health care costs. A third of adults in the U.S. are obese, according to the Centers for Disease Control and Prevention, and another third are overweight, with Americans getting fatter every year. Obesity is responsible for more than 160,000 “excess” deaths a year, according to a study in the Journal of the American Medical Association . The average obese person costs society more than $7,000 a year in lost productiv­ity and added medical treatment, say researchers at George Washington University. Lifetime added medical costs alone for a person 70 pounds or more overweight amount to as much as $30,000, depending on race and gender.

All this lends urgency to the question: Why are extra pounds so difficult to shed and keep off? It doesn’t seem as though it should be so hard. The basic formula for weight loss is simple and widely known: consume fewer calories than you expend. And yet if it really were easy, obesity would not be the nation’s number-one lifestyle-related health concern. For a species that evolved to consume energy-dense foods in an environment where famine was a constant threat, losing weight and staying trimmer in a modern world of plenty fueled by marketing messages and cheap empty calories is, in fact, terrifically difficult. Almost everybody who tries to diet seems to fail in the long run--a review in 2007 by the American Psychological Association of 31 diet studies found that as many as two thirds of dieters end up two years later weighing more than they did before their diet.


Add to digg
Add to StumbleUpon
Add to Reddit
Add to Facebook
Add to del.icio.us
Email this Article

Can You Live Forever? Maybe Not–But You Can Have Fun Trying

Posted: at 6:11 pm

Editor's Note: Carl Zimmer, author of this month's article, "100 Trillion Connections," has just brought out a much-acclaimed e-book, Brain Cuttings: 15 Journeys Through the Mind (Scott & Nix), that compiles a series of his writings on neuroscience. In this chapter, adapted from an article that was first published in Playboy , Zimmer takes the reader on a tour of the 2009 Singularity Summit in New York City. His ability to contrast the fantastical predictions of speakers at the conference with the sometimes more skeptical assessments from other scientists makes his account a fascinating read.  

Let's say you transfer your mind into a computer--not all at once but gradually, having electrodes inserted into your brain and then wirelessly outsourcing your faculties. Someone reroutes your vision through cameras. Someone stores your memories on a net of microprocessors. Step by step your metamorphosis continues until at last the transfer is complete. As engineers get to work boosting the performance of your electronic mind so you can now think as a god, a nurse heaves your fleshy brain into a bag of medical waste. As you--for now let's just call it "you"--start a new chapter of existence exclusively within a machine, an existence that will last as long as there are server farms and hard-disk space and the solar power to run them, are "you" still actually you?


Add to digg
Add to StumbleUpon
Add to Reddit
Add to Facebook
Add to del.icio.us
Email this Article

IBM Files Application to Patent The Patent

Posted: at 6:11 pm

Ever heard of people getting obnoxious amount of money to conduct research or get a PhD for pointless research. Thats what came to my mind when I first came across this news from IBM.

Just remind these were some of the winning ideas that funded by Government in US for Research papers and PhDs

1. the National Science Foundation once gave $100K grant to research why American players go to greater lengths to mod the popular MMO than do Chinese WoW players.

2.  Pressures Produced When Penguins Pooh — Calculations on Avian Defaecation”, Polar Biology, 2004

3. Suicide rates are linked to the amount of country music played on the radio, , Medicine, 2005

4. Rats can’t always tell the difference between Japanese spoken backwards and Dutch spoken backwards, winner, Linguistics, 2007

 As much as I stand to loose a chance to get a job at IBM by this post, its  so hard not to think loud, and ask IBM what the heck was wrong with your brains, when you made the decision to patent the patent.

 The Original Post Pasted from http://www.tomshardware.com/news/ibm-patents-the-patent,11868.html

IBM Files Application to Patent The Patent Process

6:40 PM – January 3, 2011 by Douglas Perry – source: ConceivablyTech

   Reading through IT patents these days requires patience and tolerance. When you can patent common sense, there is clearly something wrong with the system. But as long as no changes are being made, you are inviting people to exploit what is available and IBM has just demonstrated what may be possible, if one of their most recent patent applications is accepted by the USPTO.

The company felt it would be beneficial to patent the patent strategy process all the way from training inventors, to competitor monitoring and protecting (i.e. suing someone) a patent from infringement. This patent does not describe anything new, but a strategy that is being pursued by anyone who owns a patent and especially patent trolls or people like Paul Allen, who is just taking another shot at suing Google for patent infringement.

The patent application could mean that IBM in fact is working on a software that automates patent management or the company simply felt it was necessary to patent the idea of filing a patent and treating it in the way it could be considered common sense. It is especially revealing how much focus the inventor put on a “defend” module that implies a lawsuit strategy. It would take a genius to figure that out.   

Reading through this patent is a good lecture how a patent these days should not look like. IBM is the natural place for this idea as there is no other company that files for as many patents (and receives as many patents) as IBM does. But if the patent idea gets approved

A difference between normal and cancer SC biology in the nervous system

Posted: at 6:11 pm

Neural Tumor-Initiating Cells Have Distinct Telomere Maintenance and Can be Safely Targeted for Telomerase Inhibition by Pedro Castelo-Branco and 12 co-authors, including Uri Tabori, Clin Cancer Res 2011(Jan 1); 17(1): 111-121 [Full text]. Translational Relevance:

Pediatric neural tumors (brain tumors and neuroblastoma) are the leading cause of morbidity and mortality in childhood cancer. This is due to their ability to recur after minimal disease is achieved. Telomerase is active in most malignant pediatric neural tumors. Therefore, telomerase inhibition may offer an effective treatment option for such patients. Because normal stem cells may require telomerase for continuous self-renewal, this therapy may have devastating effects on normal nervous system development and maintenance.

This study reveals that telomerase activation exists only in the tumor-initiating cancer subpopulation and is critical to sustain their survival and self-renewal potential. Importantly, normal neural or neural crest stem cells do not require telomerase for their self-renewal. Furthermore, as opposed to conventional chemoradiation therapies, telomerase inhibition results in irreversible loss of self-renewal capacity of tumor initiating cells in vitro and in vivo.

These observations uncover a difference between normal and cancer stem cell biology in the nervous system and suggest that telomerase inhibition may offer a specific and safe therapeutic approach for these devastating tumors.

For a commentary on this article, see: Anita B Hjelmeland and Jeremy N Rich, Clin Cancer Res 2011(Jan 1); 17(1): 3-5 (unlike the article, the commentary is not publicly accessible). Abstract:

Telomerase is an important mechanism by which cancers escape replicative senescence. In neural tumors, cancer stem cells express telomerase, suggesting that this may explain their preferential tumorigenesis. Oligonucleotide telomerase targeting selectively disrupts cancer stem cell growth through the induction of differentiation, adding to the armamentarium of anticancer stem cell therapies.

International Stem Cell’s Scientists in Collaboration with World Leading Stem Cell Experts Extend Understanding of Human Parthenogenetic Stem Cells…

Posted: at 6:11 pm

International Stem Cell's Scientists in Collaboration with World Leading Stem Cell Experts Extend Understanding of Human Parthenogenetic Stem Cells in Peer-Reviewed Publications

International Stem Cell Corporation (OTCBB:ISCO), http://www.internationalstemcell.com, in collaboration with leading stem cell scientists, announces findings that human parthenogenetic stem cells (hpSC) and human embryonic stem cells (hESC) are similar in their undifferentiated state, and are capable of differentiating into neural lineages such as functional retinal pigment epithelial (RPE) cells that have potential to treat retinal diseases such as age-related macular degeneration.

ISCO's CEO Andrey Semechkin, Ph.D., said: "These data are extremely important as they demonstrate that parthenogenetic stem cells have therapeutic potential like conventional embryonic stem cells; however, parthenogenetic stem cells have the additional benefit of superior immune-matching capabilities."

This evidence is presented in a recently published paper entitled: "Equivalence of conventionally-derived and parthenote-derived human embryonic stem cells" published in PLoS ONE (Public Library of Science).

Hans Keirstead, Ph.D., Professor of Anatomy and Neurobiology and Neurological Surgery at the University of California, Irvine and the senior author of the paper, said: "This work is the first wide-ranging comparison between these two important pluripotent stem cell types and demonstrates that human parthenogenetic stem cells are capable of differentiation along retinal lineages."

According to Nikolay Turovets, Ph.D., ISCO's Director of Research and Therapeutic Development and co-author of the paper, "Derivation of RPE from hpSC is the next logical step on the way to developing patient-specific therapies to treat eye degenerative disorders. If studies using RPE derived from hESC demonstrate utility in treating such diseases, it may become necessary to address problems associated with immune rejection. RPE derived from hpSC can be better immune-matched to the patient, thus reducing the chance of immune rejection."

This work forms part of ISCO's ophthalmology program developed in collaboration with the team of scientists at the University of California, Irvine led by Dr. H. Keirstead. One of the principal aims of the program is to create three-dimensional retinal tissue for transplantation that may be used to rescue the vision of individuals with retinitis pigmentosa, a group of inherited disorders characterized by progressive vision loss.

ISCO has established collaborations with other leading stem cell researchers to exploit the unique qualities of hpSCs. In addition to the collaboration with Keirstead, ISCO scientists co-authored a publication with Jeanne Loring, Ph.D., the Director of the Center for Regenerative Medicine at The Scripps Research Institute in La Jolla, entitled "Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture" published in Cell Stem Cell in January, 2011. Ruslan Semechkin, Ph.D., Vice President of ISCO and co-author on this paper, said: "We are excited about being involved in Dr. Loring's work, which compares molecular characteristics of hundreds of different human pluripotent cell lines." Dr. Loring added: "hpSCs are intriguing because they are pluripotent like hESCs, but have differences in imprinting, the process in embryonic development in which certain genes are inactivated. This makes hpSCs tremendously valuable for understanding the molecular basis of the imprinting process in humans."


International Stem Cell Corporation is a California-based biotechnology company focused on the therapeutic applications of human parthenogenetic stem cells and the development and commercialization of cell-based research and cosmetic products. ISCO's core technology, parthenogenesis, results in creation of pluripotent human stem cells from unfertilized oocytes (eggs). hpSCs avoid ethical issues associated with the use or destruction of viable human embryos. ISCO scientists have created the first parthenogenic, homozygous stem cell line that can be a source of therapeutic cells with minimal immune rejection after transplantation into hundreds of millions of individuals of differing sexes, ages and racial groups. This offers the potential to create the first true stem cell bank, UniStemCell™, while avoiding the ethical issue of using fertilized eggs. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology and cell-based skin care products through its subsidiary Lifeline Skin Care. More information is available at ISCO's website, http://www.internationalstemcell.com.

To subscribe to receive ongoing corporate communications please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0.


Statements pertaining to anticipated technological developments and therapeutic applications, and other opportunities for the company and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, uncertainty in the results of clinical trials or regulatory approvals, need and ability to obtain future capital, application of capital resources among competing uses, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update these forward-looking statements.

Key Words: Stem Cells, Biotechnology, Parthenogenesis

International Stem Cell Corporation
Kenneth C. Aldrich, Chairman
Jeffrey Janus, Senior VP

Next Posts »

Page 112