Aubrey de Grey on "The Undoing of Aging"
Posted: April 21, 2013 at 2:57 am
Philanthropy by high net worth individuals has the potential to move the needle on any major biotechnology project these days. The cost of research in the field is falling rapidly, thanks to spectacular ongoing gains in computational power and materials science. There are now thousands of individuals in the world with a net worth sufficient to completely fund a cure for a disease, from a starting point of nothing but ideas through to first human trials. But of course to exchange your entire net worth for a cure, to give up on the whole of the vast process that has been your business life to date, you'd have to be something of a visionary zealot - and people tend not to be both very wealthy and visionary zealots of this nature; the two paths are mutually exclusive.
The cost to develop the various biotechnologies of rejuvenation enumerated in the SENS vision - a digest of discoveries from the past twenty years in many fields of the life sciences, coupled with innovative, detailed plans to develop therapies - might be in the vicinity of a billion dollars over ten to twenty years. That would give you a good chance at demonstrating rejuvenation in old mice, such as by doubling their remaining life span, with commensurate improvements in their health and reductions in risk of age-related disease. There are perhaps a hundred people in the world who could fund that project end to end on 10% of their net worth or less, though as I've noted in the past a billionaire is possibly best viewed more as the head of a city-state than a person with complete agency over their own fortune.
One portion of the advocacy and fundraising for new approaches to longevity science like SENS involves gathering a strong grassroots community and leaning on their modest financial support. This sort of activity typically takes place during the bootstrapping phase of development, and in the process validates your cause in the eyes of established funding sources, high net worth philanthropists, and so forth. These institutions and individuals tend to be very conservative in how they devote their resources to scientific projects, which means that you must have some backing and widespread validation in order to become an attractive recipient. So it has traditionally been the case that you can't really make too much of a mark without both a broad base of support among the public and interested followers, and then atop that some circle of people and institutions capable of devoting large-scale funding to solving specific problems. The rise of crowdfunding is changing that balance, but it still generally holds - it's the rare organization that manages to skip past the need for wealthy donors due to the size and strength of its community.
Given all of this you might look at the advocacy and outreach for SENS or other disruptive, next-generation, high-yield approaches to extending healthy human life as something that has three components:
- Convince the scientific community.
- Convince the general public.
- Convince high net worth donors and funding institutions.
In the third category, there is the constant process of networking - connections, discussions, and introductions that we don't see all that much of from the outside - but there is also the matter of messaging via channels aimed at the wealthier and more influential portions of society. One example of that is a recent article by researcher and advocate Aubrey de Grey in the Private Journey, a magazine aimed at luxury consumers. Via the Reddit SENS community, I note that a PDF copy can be downloaded from the SENS Research Foundation site archives:
The desire to defeat aging is surely even more long-standing than the quest to reach the stars. Unfortunately, the idea that we will crumble and die is so crippling that most people evidently need to convince themselves, by whatever means, that it is not such a bad thing after all. Whether it's the existence of a joyous afterlife, or the presumption that a post-aging world would be unsustainably overpopulated, or the fear of immortal dictators, a conversation with nearly anyone about the idea of developing medicine to prevent age-related ill-health is almost certain to be derailed into arguments about whether such medicine would be a good thing at all.
A key pillar of many people's thinking about this topic is the misconception that "aging itself" is somehow a different sort of thing than the diseases of old age. There is actually no such distinction. Age-related diseases spare young adults simply because they take a long time to develop, and they affect everyone who lives long enough because they are side-effects of the body's normal operation rather than being caused by external factors such as infections. In other words, aging is simply the collection of early stages of the diseases and disabilities of old age, and treatment of aging is simply preventative medicine for those conditions - preventative geriatrics. It is thus logically incoherent to support medicine for the elderly but not medicine for aging.
I claim no originality for the above: it has long been the virtually universal view of those who study the biology of aging. I believe it is resisted by the wider world, despite those experts' energetic efforts, overwhelmingly because people don't believe there is much chance of significant progress in their or even their children's lifetimes and they don't want to get their hopes up. But in recent years, the justification for such pessimism has evaporated.
It has done so above all because of progress in regenerative medicine, which colloquially (but see below) consists of stem cells and tissue engineering. Regenerative medicine can be defined as the restoration of bodily function by restoration of structure. We may replace entire organs (tissue engineering), or we may repair organs by replacing their constituent cells (stem cell therapy). In a sense, regenerative medicine is maintenance for the human body. as such, it should in principle be capable of constituting preventative maintenance for the chronic, slowly progressive, initially harmless but eventually fatal processes that jointly make up aging and the diseases of old age. Regenerative medicine has only recently, however, become recognized as a promising avenue for postponing age-related ill-health. This is for two reasons. firstly, it was originally conceived and pursued for its potential to treat acute injury, such as spinal cord trauma, rather than chronic damage: thus, regenerative medicine pioneers and biologists of aging simply didn't talk to each other very much, with the result that those studying aging were insufficiently informed about progress in regenerative medicine to appreciate its potential. The second reason was equally important: in order to be plausibly applicable to aging, regenerative medicine must be broadened into a host of other areas, over and above stem cells and tissue engineering, and those areas are mostly at considerably earlier stages of development.
But not fancifully early. In the decade since I first laid out a putatively comprehensive classification of the various types of molecular and cellular "damage" that must be periodically repaired in order to stave off the decline of old age, and the specifics of how we might do it, progress has been gratifyingly rapid (though I estimate it could be at least three times faster if the potential of this approach were more widely understood and funding for it correspondingly elevated). Furthermore, that plan has abundantly stood the test of time, undergoing only minor adjustments.
In this short, general-audience piece I can only hint at the advances over the past year or two achieved by researchers worldwide in this space. SENS Research Foundation was created for this purpose, and alongside numerous other institutes and organizations, both commercial and nonprofit, we have achieved not only the retardation of aging but its actual repair, restoring youthful health to animals that were suffering widespread age-related decline. Much remains to be done to extend these results, before they can realistically be applied in the clinic. However, the removal of toxic metabolic by-products shows clear promise of completely eliminating cardiovascular disease, the Western world's foremost killer, and also macular degeneration, the leading cause of blindness in the elderly. Similarly, removing cells that have become dysregulated and toxic to the body was recently shown, in multiple models, to restore function to sick animals. Advances like these, in combination with traditional regenerative medicine, may in the next few decades deliver a truly comprehensive and dramatic postponement of age-related ill-health.
Source:
http://www.fightaging.org/archives/2013/04/aubrey-de-grey-on-the-undoing-of-aging.php
- Grand Traverse Co. Health Department Seeks Volunteers for Hagerty Center Vaccination Clinics - 9&10 News - January 20th, 2021
- How to live longer: Should you skip breakfast to promote longevity? Doctor weighs in - Express - December 28th, 2020
- China Long Avoided Talking About Mental Health. Then Covid Hit. - The New York Times - December 22nd, 2020
- With fitness centers shut down due to COVID-19, home gyms are on the rise - SW News Media - December 10th, 2020
- Review: Equinox Takes Luxe Fitness Into The Wild at Their First Outdoor Gym in LA - InsideHook - September 30th, 2020
- Colorados fitness industry starting to reawaken, but some studios will never reopen - Loveland Reporter-Herald - June 16th, 2020
- In sickness and in health: North Spokane couple weds in front yard during pandemic - The Spokesman-Review - May 18th, 2020
- Furry Friends Provide Big Benefits - June 20th, 2018
- CT Nutrition Consultants - Registered Dietitian - July 12th, 2017
- Channel Update - Fitness & Football Videos Only! - Video - August 10th, 2014
- Measuring the Impact of Cytomegalovirus in Younger People - September 1st, 2013
- Decreased mTOR Expression Provides 20% Mean Life Span Extension in Mice - September 1st, 2013
- A Collagen Patch to Spur Heart Tissue Repair - September 1st, 2013
- Statin Use Correlates With Higher Telomerase Activity - September 1st, 2013
- Children of Long-Lived Parents Have Better Immune Systems - September 1st, 2013
- A Two-Part Report on Global Futures 2045 - August 25th, 2013
- The Next Few Years of Research Into Alzheimer's Disease - August 25th, 2013
- A Look Back at Some of the Roots of Modern Thought on Radical Life Extension - August 25th, 2013
- Damaging the Biology of Mice to Make them Age More Rapidly Often Tells Us Little of Use - August 25th, 2013
- Calorie Restriction as a Means to Augment Cancer Therapies - August 25th, 2013
- Life Without Ageing: Aubrey de Grey and Tom Kirkwood to Debate Longevity Science at the British Science Festival - August 18th, 2013
- A Short Overview of 3-D Printing in Tissue Engineering - August 18th, 2013
- Another Way to Improve Memory in Old Mice - August 18th, 2013
- SENS Research Foundation Releases 2013 Research Report - August 18th, 2013
- Targeting Redox Biology to Reverse Mitochondrial Dysfunction - August 18th, 2013
- The Cost of Living Longer, Even in Good Health - August 11th, 2013
- Signs of Progress: Insurers Talk of Radical Life Extension - August 11th, 2013
- The Current State of Knowledge of Genetics and Longevity - August 11th, 2013
- A Video Tour of Alcor and Interview With Max More - August 11th, 2013
- And Now For Something Reprehensible - August 11th, 2013
- Opposing the Argument that Increased Longevity Will Slow Progress, and is Therefore Undesirable - August 4th, 2013
- Considering State Opposition to Life Extension Technologies - August 4th, 2013
- Steps Towards a Tissue Engineered Thymus - August 4th, 2013
- The Intersection of Kickstarter-Style Fundraising for Research and Distributed Development in Complex Problems - August 4th, 2013
- The Cost of Being Tall is a Shorter Life Expectancy - August 4th, 2013
- A Little Methionine Restriction Research - June 16th, 2013
- Calorie Restriction Versus Resveratrol Treatment - June 16th, 2013
- Reviewing the Literature on Calorie Restriction and Oxidative Stress - June 16th, 2013
- Arguing By Induction For an Absence of Boredom in an Ageless, Greatly Extended Healthy Life - June 16th, 2013
- Investigating Fingertip Regeneration in Mammals - June 16th, 2013
- The Incentives Associated With Becoming a Machine Entity - June 9th, 2013
- A Good Scientific Polemic on Aging - June 9th, 2013
- Quantifying Neurogenesis in Adult Humans - June 9th, 2013
- Considering the Details of Replacing the Brain - June 9th, 2013
- Overreacting in the Direction of Doing Nothing - June 9th, 2013
- Considering the Regenerative Signals Emitted by Transplanted Stem Cells - June 2nd, 2013
- A Bioprosthetic Heart - June 2nd, 2013
- Exercise Versus Peripheral Artery Disease - June 2nd, 2013
- Bracketed by Billionaires - June 2nd, 2013
- Stem Cell Transplants for Leukemia Showing Improved Outcomes - June 2nd, 2013
- Videos from the SENS Research Foundation Evidence Studios Event in December 2012 - May 26th, 2013
- Early Mortality Rates Predict Late Mortality Rates - May 26th, 2013
- Decellularization May Enable Use of More Donor Organs - May 26th, 2013
- Mitochondrially Targeted Antioxidant SS-31 Reverses Some Measures of Aging in Muscle - May 26th, 2013
- Arguing for the Role of Nuclear DNA Damage in Aging - May 26th, 2013
- Reviewing the Results of Calorie Restriction Primate Studies - May 19th, 2013
- A Possible Biomarker for Senescent Cells - May 19th, 2013
- Inhibiting ICMT as a Progeria Therapy - May 19th, 2013
- Are the Most Influential Futurists Those Who Put in the Work to Make Their Visions Real? - May 19th, 2013
- Excess Body Fat Hardens Arteries - May 19th, 2013
- Comments on Rapamycin and Metformin - May 12th, 2013
- The Present State of Artificial Retinas - May 12th, 2013
- The State of Electromechanical and Bioartifical Organs - May 12th, 2013
- Parabiosis Points to GDF-11 as a Means to Reverse Age-Related Cardiac Hypertrophy - May 12th, 2013
- Insights into Inflammaging - May 12th, 2013
- A Different Take on NF-?B and the Hypothalamus - May 5th, 2013
- T-Regulatory Cells More Numerous in the Aged Immune System - May 5th, 2013
- HMGA1 as a Potential Common Mechanism in Cancer - May 5th, 2013
- Recent Research Results from the Study of Naked Mole Rats - May 5th, 2013
- A Skeptical View of Mitochondrial DNA Damage and Aging - May 5th, 2013
- Recent Calorie Restriction Research - April 28th, 2013
- Joining the Dots in Genetic Parkinson's Disease - April 28th, 2013
- Considering the Electron Transport Chain in Aging - April 28th, 2013
- More Data on Granulocyte Transplant Cancer Therapies - April 28th, 2013
- Measures of Mitochondrial DNA Damage Lower in Long-Lived Mice - April 28th, 2013
- Mitochondrial Functional Mutations and Worm Longevity - April 21st, 2013
- Indy Mutations and Fly Longevity - April 21st, 2013
- Further Research on BubR1, Cellular Senescence, and Aging - April 21st, 2013
- Sterilized Dogs Live Longer - April 21st, 2013
- Robust Cancer Therapies Will Mean a Greater Use of Aggressive Stem Cell Therapies - April 14th, 2013