Decreased mTOR Expression Provides 20% Mean Life Span Extension in Mice
Posted: September 1, 2013 at 2:49 am
Mammalian (or mechanistic, depending on who you ask) target of rapamycin (mTOR) is the most likely candidate for the next round of billion-dollar research funding devoted to the search for drugs that can slow aging. It will be a repeat of the overhyped and ultimately largely futile interest in sirtuin research, which generated knowledge but nothing of real practical application, except that this time there is far more compelling evidence that manipulation of mTOR actually extends life in laboratory animals. Though as always, there are those who believe that this is not in fact the case - that mTOR alteration only reduces cancer risk, rather than impacting the processes of aging per se. Just as resveratrol and resveratrol-derivatives are the compounds of choice for those investigating sirtuin biology, so rapamycin and rapamycin-derivatives are the compounds of choice for research groups focused on manipulating mTOR and its related signaling networks. I would imagine that we're in for another decade or so of overhyped claims and public and research community interest in what is in fact an inefficient, expensive, and time-consuming path towards only slightly extending healthy life.
Drugs to slow aging through alterations to metabolism are not the path to radical life extension. Slowing aging does nothing for people already old. The research community should focus instead on rejuvenation through therapies that repair and remove the cellular damage that causes aging, an approach that can actually meaningfully help the aged when realized. For all that rejuvenation is the obviously superior research strategy, however, it's taking time to convince the world of that truth. Time spent on trying to slow aging is little different in outcome to time spent investigating the details of aging but choosing to do nothing about it: a few years here and there, and nothing that is as effective as simple exercise and calorie restriction. There's no such thing as useless knowledge in the long term, but we already know enough to work effectively on human rejuvenation.
The new study quoted below will no doubt bolster the prospects of those groups presently raising funds for attempts to slow aging or further develop drug candidates derived from rapamycin. While looking at the results, however, you might compare them with plain old calorie restriction in mice, something that can produce twice the extension of healthy life shown here.
MTOR is a kinase involved in myriad cellular processes, from autophagy to protein synthesis. Genetic studies of TOR in other organisms, such as yeast and flies, have implicated a role for the enzyme in lifespan. In mammals, however, mTOR is required for survival, making a knockout mouse model unfeasible. So the National Heart, Lung and Blood Institute's Toren Finkel and his colleagues decided to use a mouse in which transcription was only partially disrupted, reducing the levels of mTOR to about 25 percent of the normal amount.
All else being equal, the researchers found that normal mice typically lived 26 months, while those with less mTOR survived around 30 months. Finkel said the increase in lifespan was greater than other researchers have seen using the immunosuppressant rapamycin to inhibit mTOR. It's possible that having mTOR reduced beginning in the womb, rather than at middle age, could explain the disparity. Additionally, this new mutant affected the levels of both forms of mTOR - mTORC1 and mTORC2 complexes - rather than preferentially impacting one, as rapamycin would.
The paper on this research is open access, so head on over and take a look. I think you'll find it interesting. In particular note the author's cautions regarding the size of the life extension effect and the life span of the control mice in the discussion section: the number of mice used isn't large, and it's possible that the controls were just randomly a slightly short-lived group.
We analyzed aging parameters using a mechanistic target of rapamycin (mTOR) hypomorphic mouse model. Mice with two hypomorphic (mTOR?/?) alleles are viable but express mTOR at approximately 25% of wild-type levels. These animals demonstrate reduced mTORC1 and mTORC2 activity and exhibit an approximately 20% increase in median survival. While mTOR?/? mice are smaller than wild-type mice, these animals do not demonstrate any alterations in normalized food intake, glucose homeostasis, or metabolic rate. Consistent with their increased lifespan, mTOR?/? mice exhibited a reduction in a number of aging tissue biomarkers. Functional assessment suggested that, as mTOR?/? mice age, they exhibit a marked functional preservation in many, but not all, organ systems. Thus, in a mammalian model, while reducing mTOR expression markedly increases overall lifespan, it affects the age-dependent decline in tissue and organ function in a segmental fashion.
- Grand Traverse Co. Health Department Seeks Volunteers for Hagerty Center Vaccination Clinics - 9&10 News - January 20th, 2021
- How to live longer: Should you skip breakfast to promote longevity? Doctor weighs in - Express - December 28th, 2020
- China Long Avoided Talking About Mental Health. Then Covid Hit. - The New York Times - December 22nd, 2020
- With fitness centers shut down due to COVID-19, home gyms are on the rise - SW News Media - December 10th, 2020
- Review: Equinox Takes Luxe Fitness Into The Wild at Their First Outdoor Gym in LA - InsideHook - September 30th, 2020
- Colorados fitness industry starting to reawaken, but some studios will never reopen - Loveland Reporter-Herald - June 16th, 2020
- In sickness and in health: North Spokane couple weds in front yard during pandemic - The Spokesman-Review - May 18th, 2020
- Furry Friends Provide Big Benefits - June 20th, 2018
- CT Nutrition Consultants - Registered Dietitian - July 12th, 2017
- Channel Update - Fitness & Football Videos Only! - Video - August 10th, 2014
- Measuring the Impact of Cytomegalovirus in Younger People - September 1st, 2013
- A Collagen Patch to Spur Heart Tissue Repair - September 1st, 2013
- Statin Use Correlates With Higher Telomerase Activity - September 1st, 2013
- Children of Long-Lived Parents Have Better Immune Systems - September 1st, 2013
- A Two-Part Report on Global Futures 2045 - August 25th, 2013
- The Next Few Years of Research Into Alzheimer's Disease - August 25th, 2013
- A Look Back at Some of the Roots of Modern Thought on Radical Life Extension - August 25th, 2013
- Damaging the Biology of Mice to Make them Age More Rapidly Often Tells Us Little of Use - August 25th, 2013
- Calorie Restriction as a Means to Augment Cancer Therapies - August 25th, 2013
- Life Without Ageing: Aubrey de Grey and Tom Kirkwood to Debate Longevity Science at the British Science Festival - August 18th, 2013
- A Short Overview of 3-D Printing in Tissue Engineering - August 18th, 2013
- Another Way to Improve Memory in Old Mice - August 18th, 2013
- SENS Research Foundation Releases 2013 Research Report - August 18th, 2013
- Targeting Redox Biology to Reverse Mitochondrial Dysfunction - August 18th, 2013
- The Cost of Living Longer, Even in Good Health - August 11th, 2013
- Signs of Progress: Insurers Talk of Radical Life Extension - August 11th, 2013
- The Current State of Knowledge of Genetics and Longevity - August 11th, 2013
- A Video Tour of Alcor and Interview With Max More - August 11th, 2013
- And Now For Something Reprehensible - August 11th, 2013
- Opposing the Argument that Increased Longevity Will Slow Progress, and is Therefore Undesirable - August 4th, 2013
- Considering State Opposition to Life Extension Technologies - August 4th, 2013
- Steps Towards a Tissue Engineered Thymus - August 4th, 2013
- The Intersection of Kickstarter-Style Fundraising for Research and Distributed Development in Complex Problems - August 4th, 2013
- The Cost of Being Tall is a Shorter Life Expectancy - August 4th, 2013
- A Little Methionine Restriction Research - June 16th, 2013
- Calorie Restriction Versus Resveratrol Treatment - June 16th, 2013
- Reviewing the Literature on Calorie Restriction and Oxidative Stress - June 16th, 2013
- Arguing By Induction For an Absence of Boredom in an Ageless, Greatly Extended Healthy Life - June 16th, 2013
- Investigating Fingertip Regeneration in Mammals - June 16th, 2013
- The Incentives Associated With Becoming a Machine Entity - June 9th, 2013
- A Good Scientific Polemic on Aging - June 9th, 2013
- Quantifying Neurogenesis in Adult Humans - June 9th, 2013
- Considering the Details of Replacing the Brain - June 9th, 2013
- Overreacting in the Direction of Doing Nothing - June 9th, 2013
- Considering the Regenerative Signals Emitted by Transplanted Stem Cells - June 2nd, 2013
- A Bioprosthetic Heart - June 2nd, 2013
- Exercise Versus Peripheral Artery Disease - June 2nd, 2013
- Bracketed by Billionaires - June 2nd, 2013
- Stem Cell Transplants for Leukemia Showing Improved Outcomes - June 2nd, 2013
- Videos from the SENS Research Foundation Evidence Studios Event in December 2012 - May 26th, 2013
- Early Mortality Rates Predict Late Mortality Rates - May 26th, 2013
- Decellularization May Enable Use of More Donor Organs - May 26th, 2013
- Mitochondrially Targeted Antioxidant SS-31 Reverses Some Measures of Aging in Muscle - May 26th, 2013
- Arguing for the Role of Nuclear DNA Damage in Aging - May 26th, 2013
- Reviewing the Results of Calorie Restriction Primate Studies - May 19th, 2013
- A Possible Biomarker for Senescent Cells - May 19th, 2013
- Inhibiting ICMT as a Progeria Therapy - May 19th, 2013
- Are the Most Influential Futurists Those Who Put in the Work to Make Their Visions Real? - May 19th, 2013
- Excess Body Fat Hardens Arteries - May 19th, 2013
- Comments on Rapamycin and Metformin - May 12th, 2013
- The Present State of Artificial Retinas - May 12th, 2013
- The State of Electromechanical and Bioartifical Organs - May 12th, 2013
- Parabiosis Points to GDF-11 as a Means to Reverse Age-Related Cardiac Hypertrophy - May 12th, 2013
- Insights into Inflammaging - May 12th, 2013
- A Different Take on NF-?B and the Hypothalamus - May 5th, 2013
- T-Regulatory Cells More Numerous in the Aged Immune System - May 5th, 2013
- HMGA1 as a Potential Common Mechanism in Cancer - May 5th, 2013
- Recent Research Results from the Study of Naked Mole Rats - May 5th, 2013
- A Skeptical View of Mitochondrial DNA Damage and Aging - May 5th, 2013
- Recent Calorie Restriction Research - April 28th, 2013
- Joining the Dots in Genetic Parkinson's Disease - April 28th, 2013
- Considering the Electron Transport Chain in Aging - April 28th, 2013
- More Data on Granulocyte Transplant Cancer Therapies - April 28th, 2013
- Measures of Mitochondrial DNA Damage Lower in Long-Lived Mice - April 28th, 2013
- Aubrey de Grey on "The Undoing of Aging" - April 21st, 2013
- Mitochondrial Functional Mutations and Worm Longevity - April 21st, 2013
- Indy Mutations and Fly Longevity - April 21st, 2013
- Further Research on BubR1, Cellular Senescence, and Aging - April 21st, 2013
- Sterilized Dogs Live Longer - April 21st, 2013
- Robust Cancer Therapies Will Mean a Greater Use of Aggressive Stem Cell Therapies - April 14th, 2013